Abstract
We present a technique for displaying three-dimensional imagery of general scenes with nearly correct focus cues on multi-plane displays. These displays present an additive combination of images at a discrete set of optical distances, allowing the viewer to focus at different distances in the simulated scene. Our proposed technique extends the capabilities of multi-plane displays to general scenes with occlusions and non-Lambertian effects by using a model of defocus in the eye of the viewer. Requiring no explicit knowledge of the scene geometry, our technique uses an optimization algorithm to compute the images to be displayed on the presentation planes so that the retinal images when accommodating to different distances match the corresponding retinal images of the input scene as closely as possible. We demonstrate the utility of the technique using imagery acquired from both synthetic and real-world scenes, and analyze the system's characteristics including bounds on achievable resolution. Copyright is held by the owner/author(s).
Original language | English (US) |
---|---|
Title of host publication | Proceedings of ACM SIGGRAPH 2015 |
Publisher | Association for Computing Machinery |
Volume | 34 |
Edition | 4 |
ISBN (Electronic) | 9781450333313 |
DOIs | |
State | Published - Jul 27 2015 |
Event | ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference, SIGGRAPH 2015 - Los Angeles, United States Duration: Aug 9 2015 → Aug 13 2015 |
Other
Other | ACM Special Interest Group on Computer Graphics and Interactive Techniques Conference, SIGGRAPH 2015 |
---|---|
Country/Territory | United States |
City | Los Angeles |
Period | 8/9/15 → 8/13/15 |
Keywords
- Computational displays
- Eye accommodation
- Multi-plane displays
- Retinal blur
- Vergence-accommodation conflict