TY - GEN
T1 - Optimal efficiency-power relationship for an air motor-compressor in an energy storage and regeneration system
AU - Sancken, Caleb J.
AU - Li, Perry Y.
PY - 2010
Y1 - 2010
N2 - Compressing air from atmospheric pressure into high pressure storage and expanding the compressed air in reverse is a means of energy storage and regeneration for fluid power systems that can potentially improve energy density by an order of magnitude over existing accumulators. This approach, known as the "open accumulator" energy storage concept, as well as other applications such as compressed air powered cars, rely on the availability of efficient and power-dense air motor/compressors. Increasing power is typically accompanied by reducing efficiency with the trade-off being determined by the heat transfer capability. In this paper, the authors present the Pareto optimal trade-off between the efficiency and power for a given heat transfer capability and ambient temperature in an air motor/compressor to achieve a given pressure ratio. It is shown that the optimal frontier is generated by an air motor/compressor that compresses and expands the air via a sequence of adiabatic, isothermal, and adiabatic processes. For the same efficiency of 80%, such an optimal volume trajectory achieves 3-5 times increased power over ad-hoc volume trajectories. It is also shown that approximating the infinitely fast adiabatic portions by finite time processes do not significantly reduce the effectiveness of the optimal operating strategy.
AB - Compressing air from atmospheric pressure into high pressure storage and expanding the compressed air in reverse is a means of energy storage and regeneration for fluid power systems that can potentially improve energy density by an order of magnitude over existing accumulators. This approach, known as the "open accumulator" energy storage concept, as well as other applications such as compressed air powered cars, rely on the availability of efficient and power-dense air motor/compressors. Increasing power is typically accompanied by reducing efficiency with the trade-off being determined by the heat transfer capability. In this paper, the authors present the Pareto optimal trade-off between the efficiency and power for a given heat transfer capability and ambient temperature in an air motor/compressor to achieve a given pressure ratio. It is shown that the optimal frontier is generated by an air motor/compressor that compresses and expands the air via a sequence of adiabatic, isothermal, and adiabatic processes. For the same efficiency of 80%, such an optimal volume trajectory achieves 3-5 times increased power over ad-hoc volume trajectories. It is also shown that approximating the infinitely fast adiabatic portions by finite time processes do not significantly reduce the effectiveness of the optimal operating strategy.
UR - http://www.scopus.com/inward/record.url?scp=77953788885&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=77953788885&partnerID=8YFLogxK
U2 - 10.1115/DSCC2009-2749
DO - 10.1115/DSCC2009-2749
M3 - Conference contribution
AN - SCOPUS:77953788885
SN - 9780791848920
T3 - Proceedings of the ASME Dynamic Systems and Control Conference 2009, DSCC2009
SP - 1315
EP - 1322
BT - Proceedings of the ASME Dynamic Systems and Control Conference 2009, DSCC2009
PB - American Society of Mechanical Engineers (ASME)
T2 - 2009 ASME Dynamic Systems and Control Conference, DSCC2009
Y2 - 12 October 2009 through 14 October 2009
ER -