Optical characterization studies of a low-cost particle sensor

Jiayu Li, Pratim Biswas

Research output: Contribution to journalArticlepeer-review

48 Scopus citations


Compact low-cost sensors for measuring particulate matter (PM) concentrations are receiving significant attention as they can be used in larger numbers and in a distributed manner. Most low-cost particle sensors work on optical scattering measurements from the aerosol. To ensure accurate and reliable determination of PM mass concentrations, a relationship of the scattering signal to mass concentration should be established. The scattering signal depends on the aerosol size distributions and particle refractive index. A systematic calibration of a low-cost particle sensor (Sharp GP2Y1010AU0F) was carried out by both experimental and computational studies. Sodium chloride, silica, and sucrose aerosols were used as test cases with size distributions measured using a scanning mobility particle sizer (SMPS). The mass concentration was estimated using the measured size distribution and density of the particles. Calculations of the scattered light intensity were done using these measured size distributions and known refractive index of the particles. The calculated scattered light intensity showed better linearity with the sensor signal compared to the mass concentration. To obtain a more accurate mass concentration estimation, a model was developed to determine a calibration factor (K). K is not universal for all aerosols, but depends on the size distribution and refractive index. To improve accuracy in estimation of mass concentration, an expression for K as a function of geometric mean diameter, geometric standard deviation, and refractive index is proposed. This approach not only provides a more accurate estimation of PM concentration, but also provides an estimate of the aerosol number concentration.

Original languageEnglish (US)
Pages (from-to)1691-1704
Number of pages14
JournalAerosol and Air Quality Research
Issue number7
StatePublished - 2017
Externally publishedYes

Bibliographical note

Funding Information:
This research project was partially supported by MAGEEP at Washington University in St. Louis. One of the authors (J.L.) would also like to acknowledge McDonnell International Academy at Washington University in St. Louis for their support. The support from Dr. Chris Sorensen on optical simulation and model construction is acknowledged. The support from Deanna Lanigan, James Ballard, and Sandra Matteucci on technical writing aspects of the paper is also acknowledged.

Publisher Copyright:
© Taiwan Association for Aerosol Research.


  • Calibration linearity
  • Mass concentration
  • Number concentration
  • Sensor calibration


Dive into the research topics of 'Optical characterization studies of a low-cost particle sensor'. Together they form a unique fingerprint.

Cite this