OpeNPDN: A Neural-Network-Based Framework for Power Delivery Network Synthesis

Vidya A. Chhabria, Sachin S. Sapatnekar

Research output: Contribution to journalArticlepeer-review

3 Scopus citations

Abstract

Power delivery network (PDN) design is a nontrivial, time-intensive, and iterative task. Correct PDN design must consider power bumps, currents, blockages, and signal congestion distribution patterns. This work proposes a machine learning-based methodology that employs a set of predefined PDN templates. At the floorplan stage, coarse estimates of current, congestion, macro/blockages, and C4 bump distributions are used to synthesize a grid for early design. At the placement stage, the grid is incrementally refined based on more accurate and fine-grained distributions of current and congestion. At each stage, a convolutional neural network (CNN) selects an appropriate PDN template for each region on the chip, building a safe-by-construction PDN that meets IR drop and electromigration (EM) specifications. The CNN is initially trained using a large synthetically created dataset, following which transfer learning is leveraged to bridge the gap between real-circuit data (with a limited dataset size) and synthetically generated data. On average, the optimization of the PDN frees thousands of routing tracks in congestion-critical regions, when compared to a globally uniform PDN, while staying within the IR drop and EM limits.

Original languageEnglish (US)
Pages (from-to)3515-3528
Number of pages14
JournalIEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems
Volume41
Issue number10
DOIs
StatePublished - Oct 1 2022

Bibliographical note

Publisher Copyright:
IEEE

Keywords

  • Congestion
  • deep neural network
  • machine learning (ML)
  • physical design
  • power delivery network (PDN)
  • transfer learning

Fingerprint

Dive into the research topics of 'OpeNPDN: A Neural-Network-Based Framework for Power Delivery Network Synthesis'. Together they form a unique fingerprint.

Cite this