Abstract
In this paper, we consider online learning with non-convex loss functions. Similar to Besbes et al. [2015] we apply non-stationary regret as the performance metric. In particular, we study the regret bounds under different assumptions on the information available regarding the loss functions. When the gradient of the loss function at the decision point is available, we propose an online normalized gradient descent algorithm (ONGD) to solve the online learning problem. In another situation, when only the value of the loss function is available, we propose a bandit online normalized gradient descent algorithm (BONGD). Under a condition to be called weak pseudo-convexity (WPC), we show that both algorithms achieve a cumulative regret bound of O(√T + VTT), where VT is the total temporal variations of the loss functions, thus establishing a sublinear regret bound for online learning with non-convex loss functions and non-stationary regret measure.
Original language | English (US) |
---|---|
Pages | 235-243 |
Number of pages | 9 |
State | Published - 2018 |
Event | 21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018 - Playa Blanca, Lanzarote, Canary Islands, Spain Duration: Apr 9 2018 → Apr 11 2018 |
Conference
Conference | 21st International Conference on Artificial Intelligence and Statistics, AISTATS 2018 |
---|---|
Country/Territory | Spain |
City | Playa Blanca, Lanzarote, Canary Islands |
Period | 4/9/18 → 4/11/18 |
Bibliographical note
Publisher Copyright:Copyright 2018 by the author(s).