Abstract
We present an online community change detection algorithm called spectral CUSUM to detect the emergence of a community using a subspace projection procedure based on a Gaus-sian model setting. Theoretical analysis is provided to char-acterize the average run length (ARL) and expected detection delay (EDD), as well as the asymptotic optimality. Simulation and real data examples demonstrate the good performance of the proposed method.
Original language | English (US) |
---|---|
Title of host publication | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 3402-3406 |
Number of pages | 5 |
ISBN (Electronic) | 9781509066315 |
DOIs | |
State | Published - May 2020 |
Externally published | Yes |
Event | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 - Barcelona, Spain Duration: May 4 2020 → May 8 2020 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2020-May |
ISSN (Print) | 1520-6149 |
Conference
Conference | 2020 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2020 |
---|---|
Country/Territory | Spain |
City | Barcelona |
Period | 5/4/20 → 5/8/20 |
Bibliographical note
Publisher Copyright:© 2020 IEEE.
Keywords
- Community detection
- online change-point detection
- spectral method