One Less Reason for Filter-Pruning: Gaining Free Adversarial Robustness with Structured Grouped Kernel Pruning

Shaochen Zhong, Zaichuan You, Jiamu Zhang, Sebastian Zhao, Zachary LeClaire, Zirui Liu, Daochen Zha, Vipin Chaudhary, Shuai Xu, Xia Hu

Research output: Chapter in Book/Report/Conference proceedingConference contribution

2 Scopus citations

Abstract

Densely structured pruning methods utilizing simple pruning heuristics can deliver immediate compression and acceleration benefits with acceptable benign performances. However, empirical findings indicate such naïvely pruned networks are extremely fragile under simple adversarial attacks. Naturally, we would be interested in knowing if such a phenomenon also holds for carefully designed modern structured pruning methods. If so, then to what extent is the severity? And what kind of remedies are available? Unfortunately, both questions remain largely unaddressed: no prior art is able to provide a thorough investigation on the adversarial performance of modern structured pruning methods (spoiler: it is not good), yet the few works that attempt to provide mitigation often do so at various extra costs with only to-be-desired performance. In this work, we answer both questions by fairly and comprehensively investigating the adversarial performance of 10+ popular structured pruning methods. Solution-wise, we take advantage of Grouped Kernel Pruning (GKP)'s recent success in pushing densely structured pruning freedom to a more fine-grained level. By mixing up kernel smoothness - a classic robustness-related kernel-level metric - into a modified GKP procedure, we present a one-shot-post-train-weight-dependent GKP method capable of advancing SOTA performance on both the benign and adversarial scale, while requiring no extra (in fact, often less) cost than a standard pruning procedure. Please refer to our GitHub repository for code implementation, tool sharing, and model checkpoints.

Original languageEnglish (US)
Title of host publicationAdvances in Neural Information Processing Systems 36 - 37th Conference on Neural Information Processing Systems, NeurIPS 2023
EditorsA. Oh, T. Neumann, A. Globerson, K. Saenko, M. Hardt, S. Levine
PublisherNeural information processing systems foundation
ISBN (Electronic)9781713899921
StatePublished - 2023
Externally publishedYes
Event37th Conference on Neural Information Processing Systems, NeurIPS 2023 - New Orleans, United States
Duration: Dec 10 2023Dec 16 2023

Publication series

NameAdvances in Neural Information Processing Systems
Volume36
ISSN (Print)1049-5258

Conference

Conference37th Conference on Neural Information Processing Systems, NeurIPS 2023
Country/TerritoryUnited States
CityNew Orleans
Period12/10/2312/16/23

Bibliographical note

Publisher Copyright:
© 2023 Neural information processing systems foundation. All rights reserved.

Fingerprint

Dive into the research topics of 'One Less Reason for Filter-Pruning: Gaining Free Adversarial Robustness with Structured Grouped Kernel Pruning'. Together they form a unique fingerprint.

Cite this