On the thermal expansion of molecules

Zoltán Varga, Magdolna Hargittai, Lawrence S. Bartell

Research output: Contribution to journalArticlepeer-review

10 Scopus citations


Experimental results for a variety of molecules have shown that their bond lengths expand appreciably when the molecules are heated, as expected from the asymmetric Morse-like potentials characterizing the bonds. However, in a series of papers on structures determined by gas-phase electron diffraction, Giricheva et al. claimed that, for very hot MX3 molecules, effects of out-of-plane vibrations cancel the thermal expansion of the M-X bonds. This is incorrect. Although the computations to support their claim were correct as far as they went, the authors neglected the effects of asymmetric vibrational modes and centrifugal stretches of the bonds. In the present report, we show that quantum chemical computations for LaI3 reveal the crucial roles played by the terms neglected by Giricheva et al., which terms are responsible for thermal bond stretches of approximately 0.023 Å at 1142 K. In addition, because the iodine atoms in LaI3 are further apart in the mean structure than the sum of their Pauling van der Waals radii, the geminal nonbonded interactions are attractive. This accounts for the fact that the Morse asymmetry constant for the symmetric stretch mode is smaller than that for the asymmetric stretch. It also helps to explain the very large amplitude of the out-of-plane puckering mode, which tends to decrease the La-I bond length during the puckering trajectory.

Original languageEnglish (US)
Pages (from-to)111-121
Number of pages11
JournalStructural Chemistry
Issue number1
StatePublished - Feb 2011

Bibliographical note

Funding Information:
Acknowledgments We are grateful to Professor Sven J. Cyvin and Dr. Jon Brunvoll for their valuable advice. We are pleased to acknowledge one of the reviewers for several helpful comments. ZV and MH thank the Hungarian Scientific Research Fund (OTKA K 60365) for support. LSB thanks Social Security for support.


  • Anharmonicity
  • Electron diffraction
  • Morse potential
  • Thermal expansion of bond length


Dive into the research topics of 'On the thermal expansion of molecules'. Together they form a unique fingerprint.

Cite this