TY - JOUR

T1 - On the ranks of some (0, 1)-matrices with constant row sums

AU - Odlyzko, A. M.

PY - 1981/8

Y1 - 1981/8

N2 - Let g(n, m) denote the maximal number of distinct rows in any (0, l)-matrix with n columns, rank < n - 1, and all row sums equal to m. This paper determines g(n, m) in all cases: In addition, it is shown that if V is a k-dimensional vector subspace of any vector space, then V contains at most 2* vectors all of whose coordinates are 0 or 1.

AB - Let g(n, m) denote the maximal number of distinct rows in any (0, l)-matrix with n columns, rank < n - 1, and all row sums equal to m. This paper determines g(n, m) in all cases: In addition, it is shown that if V is a k-dimensional vector subspace of any vector space, then V contains at most 2* vectors all of whose coordinates are 0 or 1.

UR - http://www.scopus.com/inward/record.url?scp=84974268279&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84974268279&partnerID=8YFLogxK

U2 - 10.1017/S1446788700033474

DO - 10.1017/S1446788700033474

M3 - Article

AN - SCOPUS:84974268279

VL - 31

SP - 193

EP - 201

JO - Journal of the Australian Mathematical Society

JF - Journal of the Australian Mathematical Society

SN - 1446-7887

IS - 2

ER -