TY - JOUR
T1 - On the ranks of some (0, 1)-matrices with constant row sums
AU - Odlyzko, A. M.
PY - 1981/8
Y1 - 1981/8
N2 - Let g(n, m) denote the maximal number of distinct rows in any (0, l)-matrix with n columns, rank < n - 1, and all row sums equal to m. This paper determines g(n, m) in all cases: In addition, it is shown that if V is a k-dimensional vector subspace of any vector space, then V contains at most 2* vectors all of whose coordinates are 0 or 1.
AB - Let g(n, m) denote the maximal number of distinct rows in any (0, l)-matrix with n columns, rank < n - 1, and all row sums equal to m. This paper determines g(n, m) in all cases: In addition, it is shown that if V is a k-dimensional vector subspace of any vector space, then V contains at most 2* vectors all of whose coordinates are 0 or 1.
UR - http://www.scopus.com/inward/record.url?scp=84974268279&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84974268279&partnerID=8YFLogxK
U2 - 10.1017/S1446788700033474
DO - 10.1017/S1446788700033474
M3 - Article
AN - SCOPUS:84974268279
SN - 1446-7887
VL - 31
SP - 193
EP - 201
JO - Journal of the Australian Mathematical Society
JF - Journal of the Australian Mathematical Society
IS - 2
ER -