On the formation of rotational spoke patterns during the Czochralski growth of bismuth silicon oxide

J. Carlos Rojo, Jeffrey J. Derby

Research output: Contribution to journalArticlepeer-review

24 Scopus citations

Abstract

High-resolution calculations are performed using a parallel finite element method to simulate combined rotational and buoyant flows of molten bismuth silicon oxide during Czochralski crystal growth. For the first time, spoke patterns are predicted along the surface of the melt at high crystal rotation rates. These patterns correspond to radially aligned roll cells confined to a thin layer near the melt surface. They arise from a modified Rayleigh instability within a destabilizing thermal boundary layer caused by crystal rotation and centrifugal pumping.

Original languageEnglish (US)
Pages (from-to)154-160
Number of pages7
JournalJournal of Crystal Growth
Volume198-199
Issue numberPART I
DOIs
StatePublished - 1999

Bibliographical note

Funding Information:
This work was supported by the Army High Performance Computing Research Center under the auspices of the Department of the Army, Army Research Laboratory cooperative agreement DAAH04-95-2-0003/contract DAAH04-95-C-0008, the content of which does not necessarily reflect the position or policy of the government, and no official endorsement should be inferred. Additional computational resources were provided by the University of Minnesota Supercomputer Institute.

Copyright:
Copyright 2020 Elsevier B.V., All rights reserved.

Keywords

  • Bismuth silicon oxide
  • Finite element method
  • Spoke patterns

Fingerprint Dive into the research topics of 'On the formation of rotational spoke patterns during the Czochralski growth of bismuth silicon oxide'. Together they form a unique fingerprint.

Cite this