TY - JOUR
T1 - On the formation and suppression of vortex 'shedding' at low Reynolds numbers.
AU - Strykowski, P. J.
AU - Sreenivasan, K. R.
PY - 1990
Y1 - 1990
N2 - Vortex 'shedding' behind circular cylinders can be altered and suppressed altogether (or 'controlled') over a limited range of Reynolds numbers, by a proper placement of a second, much smaller, cylinder in the near wake of the main cylinder. This new and dramatic suppression of vortex 'shedding' is the subject of this paper. Details of the phenomenon are documented through parallel experimental and numerical investigations, including flow visualization. Temporal growth rate measurements of the velocity fluctuations reveal that the presence of the smaller cylinder reduces the growth rate of the disturbances leading to vortex 'shedding' and that its suppression, accompanied by the disappearance of sharp spectral peaks, coincides with negative temporal growth rates. It is argued that the presence of the secondary cylinder has the effect of altering the local stability of the flow by smearing and diffusing concentrated vorticity in the shear layers behind the body; a related effect is that the secondary cylinder diverts a small amount of fluid into the wake of the main cylinder. A unified explanation of the formation and suppression of the vortex street is attempted, and it is suggested that the vortex 'shedding' is associated with temporally unstable eigenmodes which are heavily weighted by the near field. It is also shown that absolute instability is relevant, up to a point, in explaining vortex shedding, whose suppression can similarly be associated with altering the instability in the near wake region from absolute to convective.
AB - Vortex 'shedding' behind circular cylinders can be altered and suppressed altogether (or 'controlled') over a limited range of Reynolds numbers, by a proper placement of a second, much smaller, cylinder in the near wake of the main cylinder. This new and dramatic suppression of vortex 'shedding' is the subject of this paper. Details of the phenomenon are documented through parallel experimental and numerical investigations, including flow visualization. Temporal growth rate measurements of the velocity fluctuations reveal that the presence of the smaller cylinder reduces the growth rate of the disturbances leading to vortex 'shedding' and that its suppression, accompanied by the disappearance of sharp spectral peaks, coincides with negative temporal growth rates. It is argued that the presence of the secondary cylinder has the effect of altering the local stability of the flow by smearing and diffusing concentrated vorticity in the shear layers behind the body; a related effect is that the secondary cylinder diverts a small amount of fluid into the wake of the main cylinder. A unified explanation of the formation and suppression of the vortex street is attempted, and it is suggested that the vortex 'shedding' is associated with temporally unstable eigenmodes which are heavily weighted by the near field. It is also shown that absolute instability is relevant, up to a point, in explaining vortex shedding, whose suppression can similarly be associated with altering the instability in the near wake region from absolute to convective.
UR - http://www.scopus.com/inward/record.url?scp=0025491622&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=0025491622&partnerID=8YFLogxK
U2 - 10.1017/S0022112090000933
DO - 10.1017/S0022112090000933
M3 - Article
AN - SCOPUS:0025491622
SN - 0022-1120
VL - 218
SP - 71
EP - 107
JO - [No source information available]
JF - [No source information available]
IS - II
ER -