On the entropy power inequality for the rényi entropy of order [0, 1]

Arnaud Marsiglietti, James Melbourne

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants.

Original languageEnglish (US)
Article number8502868
Pages (from-to)1387-1396
Number of pages10
JournalIEEE Transactions on Information Theory
Volume65
Issue number3
DOIs
StatePublished - Mar 2019

Bibliographical note

Publisher Copyright:
© 1963-2012 IEEE.

Keywords

  • Entropy power inequality
  • Rényi entropy
  • log-concave

Fingerprint

Dive into the research topics of 'On the entropy power inequality for the rényi entropy of order [0, 1]'. Together they form a unique fingerprint.

Cite this