Abstract
Using a sharp version of the reverse Young inequality, and a Rényi entropy comparison result due to Fradelizi, Madiman, and Wang (2016), the authors derive Rényi entropy power inequalities for log-concave random vectors when Rényi parameters belong to [0, 1]. Furthermore, the estimates are shown to be sharp up to absolute constants.
Original language | English (US) |
---|---|
Article number | 8502868 |
Pages (from-to) | 1387-1396 |
Number of pages | 10 |
Journal | IEEE Transactions on Information Theory |
Volume | 65 |
Issue number | 3 |
DOIs | |
State | Published - Mar 2019 |
Bibliographical note
Publisher Copyright:© 1963-2012 IEEE.
Keywords
- Entropy power inequality
- Rényi entropy
- log-concave