On the elastic-wave imaging and characterization of fractures with specific stiffness

Fatemeh Pourahmadian, Bojan B Guzina

Research output: Contribution to journalArticlepeer-review

14 Scopus citations


The concept of topological sensitivity (TS) is extended to enable simultaneous 3D reconstruction of fractures with unknown boundary condition and characterization of their interface by way of elastic waves. Interactions between the two surfaces of a fracture, due to e.g. presence of asperities, fluid, or proppant, are described via the Schoenberg's linear slip model. The proposed TS sensing platform is formulated in the frequency domain, and entails point-wise interrogation of the subsurface volume by infinitesimal fissures endowed with interfacial stiffness. For completeness, the featured elastic polarization tensor - central to the TS formula - is mathematically described in terms of the shear and normal specific stiffness (κs,κn) of a vanishing fracture. Simulations demonstrate that, irrespective of the contact condition between the faces of a hidden fracture, the TS (used as a waveform imaging tool) is capable of reconstructing its geometry and identifying the normal vector to the fracture surface without iterations. On the basis of such geometrical information, it is further shown via asymptotic analysis - assuming "low frequency" elastic-wave illumination, that by certain choices of (κs,κn) characterizing the trial (infinitesimal) fracture, the ratio between the shear and normal specific stiffness along the surface of a nearly-planar (finite) fracture can be qualitatively identified. This, in turn, provides a valuable insight into the interfacial condition of a fracture at virtually no surcharge - beyond the computational effort required for its imaging. The proposed developments are integrated into a computational platform based on a regularized boundary integral equation (BIE) method for 3D elastodynamics, and illustrated via a set of canonical numerical experiments.

Original languageEnglish (US)
Pages (from-to)126-140
Number of pages15
JournalInternational Journal of Solids and Structures
StatePublished - 2015

Bibliographical note

Funding Information:
The support provided by the U.S. Department of Energy via NEUP Grant #10-862 and the University of Minnesota Supercomputing institute is kindly acknowledged.

Publisher Copyright:
© 2015 Elsevier Ltd.


  • Fracture interfacial characterization
  • Inverse scattering
  • Seismic fracture imaging
  • Specific stiffness
  • Topological sensitivity


Dive into the research topics of 'On the elastic-wave imaging and characterization of fractures with specific stiffness'. Together they form a unique fingerprint.

Cite this