TY - GEN
T1 - On the efficacy of NBTI mitigation techniques
AU - Chan, Tuck Boon
AU - Sartori, John
AU - Gupta, Puneet
AU - Kumar, Rakesh
PY - 2011/5/31
Y1 - 2011/5/31
N2 - Negative Bias Temperature Instability (NBTI) has become an important reliability issue in modern semiconductor processes. Recent work has attempted to address NBTI-induced degradation at the architecture level. However, such work has relied on device-level analytical models that, we argue, are limited in their flexibility to model the impact of architecture-level techniques on NBTI degradation. In this paper, we propose a flexible numerical model for NBTI degradation that can be adapted to better estimate the impact of architecture-level techniques on NBTI degradation. Our model is a numerical solution to the reaction-diffusion equations describing NBTI degradation that has been parameterized to model the impact of dynamic voltage scaling, averaging effects across logic paths, power gating, and activity management We use this model to understand the effectiveness of different classes of architecture-level techniques that have been proposed to mitigate the effects of NBTI. We show that the potential benefits from these techniques are, for the most part, smaller than what has been previously suggested, and that guardbanding may still be an efficient way to deal with aging.
AB - Negative Bias Temperature Instability (NBTI) has become an important reliability issue in modern semiconductor processes. Recent work has attempted to address NBTI-induced degradation at the architecture level. However, such work has relied on device-level analytical models that, we argue, are limited in their flexibility to model the impact of architecture-level techniques on NBTI degradation. In this paper, we propose a flexible numerical model for NBTI degradation that can be adapted to better estimate the impact of architecture-level techniques on NBTI degradation. Our model is a numerical solution to the reaction-diffusion equations describing NBTI degradation that has been parameterized to model the impact of dynamic voltage scaling, averaging effects across logic paths, power gating, and activity management We use this model to understand the effectiveness of different classes of architecture-level techniques that have been proposed to mitigate the effects of NBTI. We show that the potential benefits from these techniques are, for the most part, smaller than what has been previously suggested, and that guardbanding may still be an efficient way to deal with aging.
UR - http://www.scopus.com/inward/record.url?scp=79957557725&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79957557725&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:79957557725
SN - 9783981080179
T3 - Proceedings -Design, Automation and Test in Europe, DATE
SP - 932
EP - 937
BT - Proceedings - Design, Automation and Test in Europe Conference and Exhibition, DATE 2011
T2 - 14th Design, Automation and Test in Europe Conference and Exhibition, DATE 2011
Y2 - 14 March 2011 through 18 March 2011
ER -