On the complexity of optimal coordinated downlink beamforming

Ya Feng Liu, Yu Hong Dai, Zhi Quan Luo

Research output: Chapter in Book/Report/Conference proceedingConference contribution

10 Scopus citations

Abstract

In a cellular wireless system, users located at cell edges often suffer significant out-of-cell interference. In this paper we consider a coordinated beamforming approach whereby multiple base stations jointly optimize their downlink beamforming vectors in order to simultaneously improve the data rates of a given group of cell edge users. Assuming perfect channel knowledge, we formulate this problem as the maximization of a system utility function (which balances user fairness and average user rates), subject to individual power constraints at each base station. We show that, for the single carrier case and when the number of antennas at each base station is at least two, the optimal coordinated beamforming problem is strongly NP-hard for both the harmonic mean utility function and the proportional fairness utility function. For the min-rate utility function, we show that the problem is solvable in polynomial time.

Original languageEnglish (US)
Title of host publication2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages3274-3277
Number of pages4
ISBN (Print)9781424442966
DOIs
StatePublished - 2010
Event2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010 - Dallas, TX, United States
Duration: Mar 14 2010Mar 19 2010

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
ISSN (Print)1520-6149

Other

Other2010 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2010
Country/TerritoryUnited States
CityDallas, TX
Period3/14/103/19/10

Fingerprint

Dive into the research topics of 'On the complexity of optimal coordinated downlink beamforming'. Together they form a unique fingerprint.

Cite this