Abstract
This paper introduces an efficient framework for producing high and early result throughput in multijoin query plans. While most previous research focuses on optimizing for cases involving a single join operator, this work takes a radical step by addressing query plans with multiple join operators. The proposed framework consists of two main methods, a flush algorithm and operator state manager. The framework assumes a symmetric hash join, a common method for producing early results, when processing incoming data. In this way, our methods can be applied to a group of previous join operators (optimized for single-join queries) when taking part in multijoin query plans. Specifically, our framework can be applied by 1) employing a new flushing policy to write in-memory data to disk, once memory allotment is exhausted, in a way that helps increase the probability of producing early result throughput in multijoin queries, and 2) employing a state manager that adaptively switches operators in the plan between joining in-memory data and disk-resident data in order to positively affect the early result throughput. Extensive experimental results show that the proposed methods outperform the state-of-the-art join operators optimized for both single and multijoin query plans.
Original language | English (US) |
---|---|
Article number | 5590243 |
Pages (from-to) | 1888-1902 |
Number of pages | 15 |
Journal | IEEE Transactions on Knowledge and Data Engineering |
Volume | 23 |
Issue number | 12 |
DOIs | |
State | Published - 2011 |
Bibliographical note
Funding Information:This work is supported in part by the US National Science Foundation under Grants IIS0811998, IIS0811935, IIS-0952977, CNS0708604, and by Microsoft Research Gifts.
Keywords
- Database management
- query processing
- systems