TY - GEN

T1 - On network simplification for Gaussian Half-Duplex diamond networks

AU - Cardone, Martina

AU - Fragouli, Christina

AU - Tuninetti, Daniela

PY - 2016/8/10

Y1 - 2016/8/10

N2 - This paper investigates the simplification problem in Gaussian Half-Duplex (HD) diamond networks. The goal is to answer the following question: what is the minimum (worst-case) fraction of the total HD capacity that one can always achieve by smartly selecting a subset of k relays, out of the N possible ones? We make progress on this problem for k = 1 and k = 2 and show that for N = k + 1, k ⋯ |1, 2} at least k/k+1 of the total HD capacity is always approximately (i.e., up to a constant gap) achieved. Interestingly, and differently from the Full-Duplex (FD) case, the ratio in HD depends on N, and decreases as N increases. For all values of N and k for which we derive worst case fractions, we also show these to be approximately tight. This is accomplished by presenting N-relay Gaussian HD diamond networks for which the best k-relay subnetwork has an approximate HD capacity equal to the worst-case fraction of the total approximate HD capacity. Moreover, we provide additional comparisons between the performance of this simplification problem for HD and FD networks, which highlight their different natures.

AB - This paper investigates the simplification problem in Gaussian Half-Duplex (HD) diamond networks. The goal is to answer the following question: what is the minimum (worst-case) fraction of the total HD capacity that one can always achieve by smartly selecting a subset of k relays, out of the N possible ones? We make progress on this problem for k = 1 and k = 2 and show that for N = k + 1, k ⋯ |1, 2} at least k/k+1 of the total HD capacity is always approximately (i.e., up to a constant gap) achieved. Interestingly, and differently from the Full-Duplex (FD) case, the ratio in HD depends on N, and decreases as N increases. For all values of N and k for which we derive worst case fractions, we also show these to be approximately tight. This is accomplished by presenting N-relay Gaussian HD diamond networks for which the best k-relay subnetwork has an approximate HD capacity equal to the worst-case fraction of the total approximate HD capacity. Moreover, we provide additional comparisons between the performance of this simplification problem for HD and FD networks, which highlight their different natures.

UR - http://www.scopus.com/inward/record.url?scp=84985995276&partnerID=8YFLogxK

UR - http://www.scopus.com/inward/citedby.url?scp=84985995276&partnerID=8YFLogxK

U2 - 10.1109/ISIT.2016.7541767

DO - 10.1109/ISIT.2016.7541767

M3 - Conference contribution

AN - SCOPUS:84985995276

T3 - IEEE International Symposium on Information Theory - Proceedings

SP - 2589

EP - 2593

BT - Proceedings - ISIT 2016; 2016 IEEE International Symposium on Information Theory

PB - Institute of Electrical and Electronics Engineers Inc.

T2 - 2016 IEEE International Symposium on Information Theory, ISIT 2016

Y2 - 10 July 2016 through 15 July 2016

ER -