Abstract
This paper considers phase retrieval from the magnitude of 1-D oversampled Fourier measurements. We first revisit the well-known lack of identifiability in this case, and point out that there always exists a solution that is minimum phase, even though the desired signal is not. Next, we explain how the least-squares formulation of this problem can be optimally solved via PhaseLift followed by spectral factorization, and this solution is always minimum phase. A simple approach is then proposed to circumvent non-identifiability: adding an impulse to an arbitrary complex signal (offset to the Fourier transform) before taking the quadratic measurements, so that a minimum phase signal is constructed and thus can be uniquely estimated. Simulations with synthetic data show the effectiveness of the proposed method.
Original language | English (US) |
---|---|
Title of host publication | 2016 IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Proceedings |
Publisher | Institute of Electrical and Electronics Engineers Inc. |
Pages | 3941-3945 |
Number of pages | 5 |
ISBN (Electronic) | 9781479999880 |
DOIs | |
State | Published - May 18 2016 |
Event | 41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 - Shanghai, China Duration: Mar 20 2016 → Mar 25 2016 |
Publication series
Name | ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings |
---|---|
Volume | 2016-May |
ISSN (Print) | 1520-6149 |
Other
Other | 41st IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2016 |
---|---|
Country/Territory | China |
City | Shanghai |
Period | 3/20/16 → 3/25/16 |
Bibliographical note
Publisher Copyright:© 2016 IEEE.
Keywords
- auto-correlation estimation
- minimum phase
- over-sampled Fourier measurements
- phase retrieval
- semi-definite programming