TY - JOUR
T1 - On complete recovery of geophysical data
AU - Carroll, Robert
AU - Santosa, Fadil
AU - Payne, L.
PY - 1982
Y1 - 1982
N2 - One considers an elastic halfspace with depth (x1) dependent density Q and Lamé moduli (λ,m̈). Impulsive stresses τli = δ(x2, x3)δ(t) for x1 = 0 are applied with displacement responses ui = gi(t, x2, x3) at x1 = 0 (i = 1, 2, 3). Let vi(t, x1) = ∫∫uidx2dx3 (i = 1, 2 is enough) and set w(t, x1) = ∫∫x2u1dx2dx3. One obtains a system of 3 differential equations for v1, v2, and w to which the spectral techniques of inverse scattering theory are applied as in [25]. The inverse problems for the uncoupled vi can then be solved to produce 2 functions A1 and A2 involving (Q, λ, μ) as functions of “bound” variables y1 and y2 containing (Q, λ, μ), between which a relation then is determined. Analysis of the coupled equation for w then leads to a Fredholm integral equation whose solution provides an additional relation between (Q, λ, μ) from which (Q, λ, μ) can be determined as functions of x1. The integral equation is reduced to a Volterra type equation by results and techniques of transmutation and then solved by a modification of standard techniques. A number of features and results of independent mathematical interest arise from the transmutation theory.
AB - One considers an elastic halfspace with depth (x1) dependent density Q and Lamé moduli (λ,m̈). Impulsive stresses τli = δ(x2, x3)δ(t) for x1 = 0 are applied with displacement responses ui = gi(t, x2, x3) at x1 = 0 (i = 1, 2, 3). Let vi(t, x1) = ∫∫uidx2dx3 (i = 1, 2 is enough) and set w(t, x1) = ∫∫x2u1dx2dx3. One obtains a system of 3 differential equations for v1, v2, and w to which the spectral techniques of inverse scattering theory are applied as in [25]. The inverse problems for the uncoupled vi can then be solved to produce 2 functions A1 and A2 involving (Q, λ, μ) as functions of “bound” variables y1 and y2 containing (Q, λ, μ), between which a relation then is determined. Analysis of the coupled equation for w then leads to a Fredholm integral equation whose solution provides an additional relation between (Q, λ, μ) from which (Q, λ, μ) can be determined as functions of x1. The integral equation is reduced to a Volterra type equation by results and techniques of transmutation and then solved by a modification of standard techniques. A number of features and results of independent mathematical interest arise from the transmutation theory.
UR - http://www.scopus.com/inward/record.url?scp=84979129498&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84979129498&partnerID=8YFLogxK
U2 - 10.1002/mma.1670040105
DO - 10.1002/mma.1670040105
M3 - Article
AN - SCOPUS:84979129498
SN - 0170-4214
VL - 4
SP - 33
EP - 73
JO - Mathematical Methods in the Applied Sciences
JF - Mathematical Methods in the Applied Sciences
IS - 1
ER -