Abstract
We have pointed out previously that the survival of a cosmological baryon asymmetry despite strong non-perturbative electroweak interactions puts severe constraints on extensions of the Standard Model that violate baryon number B and/or lepton number L. After reviewing this argument including numerical factors, and implementing astrophysical constraints, in this paper we discuss the prospects for observing B and/or L violation in laboratory experiments. Modulo loopholes that we mention, we find that even if R parity is violated, the lifetime of the lightest supersymmetric particle must be so long that its decays could not be observed in accelerator experiments, and the L-violating Z decays would have unobservably small branching ratios. The only novel signature for accelerator experiments that survives our analysis is a small window for the lightest supersymmetric particle to be strongly-interacting or charged, with a lifetime that is short on a cosmological time-scale but long enough to appear stable in accelerator experiments. We also find that even if ΔB = 2 interactions exist, the rates they yield for n-n oscillations and N-N annihilations in nuclei must be unobservably small.
Original language | English (US) |
---|---|
Pages (from-to) | 77-97 |
Number of pages | 21 |
Journal | Astroparticle Physics |
Volume | 1 |
Issue number | 1 |
DOIs | |
State | Published - Nov 1992 |
Bibliographical note
Funding Information:The work of B.A.C. and S.D. was supported in part by the Natural Sciences and Engineering Research Council of Canada. The work of K.A.O. was supportedi n part by D.O.E. grant DE-ACOZ 83ER-40105a nd by a PresidentialY oung InvestigatorA ward.