TY - JOUR
T1 - NuSTAR observation of energy release in 11 solar microflares
AU - Duncan, Jessie
AU - Glesener, Lindsay
AU - Grefenstette, Brian W.
AU - Vievering, Juliana
AU - Hannah, Iain G.
AU - Smith, David M.
AU - Krucker, Sam
AU - White, Stephen M.
AU - Hudson, Hugh
N1 - Publisher Copyright:
© 2021. The American Astronomical Society. All rights reserved.
PY - 2021/2/10
Y1 - 2021/2/10
N2 - Solar flares are explosive releases of magnetic energy. Hard X-ray (HXR) flare emission originates from both hot (millions of Kelvin) plasma and nonthermal accelerated particles, giving insight into flare energy release. The Nuclear Spectroscopic Telescope ARray (NuSTAR) utilizes direct-focusing optics to attain much higher sensitivity in the HXR range than that of previous indirect imagers. This paper presents 11 NuSTAR microflares from two active regions (AR 12671 on 2017 August 21 and AR 12712 on 2018 May 29). The temporal, spatial, and energetic properties of each are discussed in context with previously published HXR brightenings. They are seen to display several "large flare"properties, such as impulsive time profiles and earlier peak times in higher-energy HXRs. For two events where the active region background could be removed, microflare emission did not display spatial complexity; differing NuSTAR energy ranges had equivalent emission centroids. Finally, spectral fitting showed a high-energy excess over a single thermal model in all events. This excess was consistent with additional higher-temperature plasma volumes in 10/11 microflares and only with an accelerated particle distribution in the last. Previous NuSTAR studies focused on one or a few microflares at a time, making this the first to collectively examine a sizable number of events. Additionally, this paper introduces an observed variation in the NuSTAR gain unique to the extremely low livetime (<1%) regime and establishes a correction method to be used in future NuSTAR solar spectral analysis.
AB - Solar flares are explosive releases of magnetic energy. Hard X-ray (HXR) flare emission originates from both hot (millions of Kelvin) plasma and nonthermal accelerated particles, giving insight into flare energy release. The Nuclear Spectroscopic Telescope ARray (NuSTAR) utilizes direct-focusing optics to attain much higher sensitivity in the HXR range than that of previous indirect imagers. This paper presents 11 NuSTAR microflares from two active regions (AR 12671 on 2017 August 21 and AR 12712 on 2018 May 29). The temporal, spatial, and energetic properties of each are discussed in context with previously published HXR brightenings. They are seen to display several "large flare"properties, such as impulsive time profiles and earlier peak times in higher-energy HXRs. For two events where the active region background could be removed, microflare emission did not display spatial complexity; differing NuSTAR energy ranges had equivalent emission centroids. Finally, spectral fitting showed a high-energy excess over a single thermal model in all events. This excess was consistent with additional higher-temperature plasma volumes in 10/11 microflares and only with an accelerated particle distribution in the last. Previous NuSTAR studies focused on one or a few microflares at a time, making this the first to collectively examine a sizable number of events. Additionally, this paper introduces an observed variation in the NuSTAR gain unique to the extremely low livetime (<1%) regime and establishes a correction method to be used in future NuSTAR solar spectral analysis.
UR - http://www.scopus.com/inward/record.url?scp=85101498925&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85101498925&partnerID=8YFLogxK
U2 - 10.3847/1538-4357/abca3d
DO - 10.3847/1538-4357/abca3d
M3 - Article
C2 - 35034967
AN - SCOPUS:85101498925
SN - 0004-637X
VL - 908
JO - Astrophysical Journal
JF - Astrophysical Journal
IS - 1
M1 - abca3d
ER -