Nursing Knowledge: Big Data Science-Implications for Nurse Leaders

Bonnie L. Westra, Thomas R. Clancy, Joyce Sensmeier, Judith J. Warren, Charlotte Weaver, Connie W. Delaney

Research output: Contribution to journalArticle

32 Scopus citations

Abstract

The integration of Big Data from electronic health records and other information systems within and across health care enterprises provides an opportunity to develop actionable predictive models that can increase the confidence of nursing leaders' decisions to improve patient outcomes and safety and control costs. As health care shifts to the community, mobile health applications add to the Big Data available. There is an evolving national action plan that includes nursing data in Big Data science, spearheaded by the University of Minnesota School of Nursing. For the past 3 years, diverse stakeholders from practice, industry, education, research, and professional organizations have collaborated through the "Nursing Knowledge: Big Data Science" conferences to create and act on recommendations for inclusion of nursing data, integrated with patient-generated, interprofessional, and contextual data. It is critical for nursing leaders to understand the value of Big Data science and the ways to standardize data and workflow processes to take advantage of newer cutting edge analytics to support analytic methods to control costs and improve patient quality and safety.

Original languageEnglish (US)
Pages (from-to)304-310
Number of pages7
JournalNursing administration quarterly
Volume39
Issue number4
DOIs
StatePublished - Sep 25 2015

Keywords

  • Big Data
  • data analysis
  • informatics
  • knowledge engineering
  • leadership
  • standardized data

Fingerprint Dive into the research topics of 'Nursing Knowledge: Big Data Science-Implications for Nurse Leaders'. Together they form a unique fingerprint.

  • Cite this