TY - JOUR
T1 - Numerical study of liquid crystal elastomers by a mixed finite element method
AU - Luo, C.
AU - Calderer, M. C.
PY - 2012/2
Y1 - 2012/2
N2 - Liquid crystal elastomers present features not found in ordinary elastic materials, such as semi-soft elasticity and the related stripe domain phenomenon. In this paper, the two-dimensional Bladon-Terentjev-Warner model and the one-constant Oseen-Frank energy expression are combined to study the liquid crystal elastomer. We also impose two material constraints, the incompressibility of the elastomer and the unit director norm of the liquid crystal. We prove existence of minimiser of the energy for the proposed model. Next we formulate the discrete model, and also prove that it possesses a minimiser of the energy. The inf-sup values of the discrete linearised system are then related to the smallest singular values of certain matrices. Next the existence and uniqueness of the Lagrange multipliers associated with the two material constraints are proved under the assumption that the inf-sup conditions hold. Finally numerical simulations of the clamped-pulling experiment are presented for elastomer samples with aspect ratio 1 or 3. The semi-soft elasticity is successfully recovered in both cases. The stripe domain phenomenon, however, is not observed, which might be due to the relative coarse mesh employed in the numerical experiment. Possible improvements are discussed that might lead to the recovery of the stripe domain phenomenon.
AB - Liquid crystal elastomers present features not found in ordinary elastic materials, such as semi-soft elasticity and the related stripe domain phenomenon. In this paper, the two-dimensional Bladon-Terentjev-Warner model and the one-constant Oseen-Frank energy expression are combined to study the liquid crystal elastomer. We also impose two material constraints, the incompressibility of the elastomer and the unit director norm of the liquid crystal. We prove existence of minimiser of the energy for the proposed model. Next we formulate the discrete model, and also prove that it possesses a minimiser of the energy. The inf-sup values of the discrete linearised system are then related to the smallest singular values of certain matrices. Next the existence and uniqueness of the Lagrange multipliers associated with the two material constraints are proved under the assumption that the inf-sup conditions hold. Finally numerical simulations of the clamped-pulling experiment are presented for elastomer samples with aspect ratio 1 or 3. The semi-soft elasticity is successfully recovered in both cases. The stripe domain phenomenon, however, is not observed, which might be due to the relative coarse mesh employed in the numerical experiment. Possible improvements are discussed that might lead to the recovery of the stripe domain phenomenon.
KW - Inf-sup condition
KW - Liquid crystal elastomer
KW - Mixed finite element method
KW - Semi-soft elasticity
KW - Variational methods
UR - http://www.scopus.com/inward/record.url?scp=84055211927&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84055211927&partnerID=8YFLogxK
U2 - 10.1017/S0956792511000313
DO - 10.1017/S0956792511000313
M3 - Article
AN - SCOPUS:84055211927
SN - 0956-7925
VL - 23
SP - 121
EP - 154
JO - European Journal of Applied Mathematics
JF - European Journal of Applied Mathematics
IS - 1
ER -