Numerical simulation of the urine flow in a stented ureter

Jimmy C.K. Tong, Ephraim M Sparrow, John P. Abraham

Research output: Contribution to journalArticlepeer-review

33 Scopus citations


When a stent is implanted in a blocked ureter, the urine passing from the kidney to the bladder must traverse a very complicated flow path. That path consists of two parallel passages, one of which is the bore of the stent and the other is the annular space between the external surface of the stent and the inner wall of the ureter. The flow path is further complicated by the presence of numerous pass-through holes that are deployed along the length of the stent. These holes allow urine to pass between the annulus and the bore. Further complexity in the pattern of the urine flow occurs because the coiled "pig tails," which hold the stent in place, contain multiple ports for fluid ingress and egress. The fluid flow in a stented ureter has been quantitatively analyzed here for the first time using numerical simulation. The numerical solutions obtained here fully reveal the details of the urine flow throughout the entire stented ureter. It was found that in the absence of blockages, most of the pass-through holes are inactive. Furthermore, only the port in each coiled pig tail that is nearest the stent proper is actively involved in the urine flow. Only in the presence of blockages, which may occur due to encrustation or biofouling, are the numerous pass-through holes activated. The numerical simulations are able to track the urine flow through the pass-through holes as well as adjacent to the blockages. The simulations are also able to provide highly accurate results for the kidney-to-bladder urine flow rate. The simulation method presented here constitutes a powerful new tool for rational design of ureteral stents in the future.

Original languageEnglish (US)
Pages (from-to)187-192
Number of pages6
JournalJournal of Biomechanical Engineering
Issue number2
StatePublished - Apr 1 2007


Dive into the research topics of 'Numerical simulation of the urine flow in a stented ureter'. Together they form a unique fingerprint.

Cite this