Numerical modeling of liquid piston gas compression

Cecil Piya, Indraneel Sircar, James D. Van De Ven, David J. Dinger

Research output: Chapter in Book/Report/Conference proceedingConference contribution

7 Scopus citations

Abstract

Prior research has shown that the use of liquid-pistons in place of conventional solid pistons within gas compression technologies can significantly improve the efficiency of gas compression. The liquid-piston provides the prospect for a consistent and high rate of heat extraction from the compressed gas during system operation. Consequently, the input power requirements during each individual compression are lowered. To validate this concept, analytical studies of the thermal-fluids and heat transfer mechanisms during gas compression were performed. The analysis involved the development of a numerical model, using the finite-difference method, which simulated a single compression stroke and quantified the crucial parameters during compression. This model was utilized to obtain theoretical efficiency values and to recognize optimal system characteristics. The results obtained from the simulation indicated double-digit increase in efficiency with the introduction of the liquid-piston.

Original languageEnglish (US)
Title of host publicationProceedings of the ASME International Mechanical Engineering Congress and Exposition 2009, IMECE 2009
PublisherAmerican Society of Mechanical Engineers (ASME)
Pages507-517
Number of pages11
EditionPART A
ISBN (Print)9780791843826
DOIs
StatePublished - 2010
EventASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009 - Lake Buena Vista, FL, United States
Duration: Nov 13 2009Nov 19 2009

Publication series

NameASME International Mechanical Engineering Congress and Exposition, Proceedings
NumberPART A
Volume9

Conference

ConferenceASME 2009 International Mechanical Engineering Congress and Exposition, IMECE2009
Country/TerritoryUnited States
CityLake Buena Vista, FL
Period11/13/0911/19/09

Fingerprint

Dive into the research topics of 'Numerical modeling of liquid piston gas compression'. Together they form a unique fingerprint.

Cite this