Abstract
By establishing multi-omics pipelines, we uncover overexpression and gene copy-number alterations of nucleoporin-93 (NUP93), a nuclear pore component, in aggressive human mammary tumors. NUP93 overexpression enhances transendothelial migration and matrix invasion in vitro, along with tumor growth and metastasis in animal models. These findings are supported by analyses of two sets of naturally occurring mutations: rare oncogenic mutations and inactivating familial nephrotic syndrome mutations. Mechanistically, NUP93 binds with importins, boosts nuclear transport of importins' cargoes, such as β-catenin, and activates MYC. Likewise, NUP93 overexpression enhances the ultimate nuclear transport step shared by additional signaling pathways, including TGF-β/SMAD and EGF/ERK. The emerging addiction to nuclear transport exposes vulnerabilities of NUP93-overexpressing tumors. Congruently, myristoylated peptides corresponding to the nuclear translocation signals of SMAD and ERK can inhibit tumor growth and metastasis. Our study sheds light on an emerging hallmark of advanced tumors, which derive benefit from robust nucleocytoplasmic transport.
Original language | English (US) |
---|---|
Article number | 110418 |
Journal | Cell reports |
Volume | 38 |
Issue number | 8 |
DOIs | |
State | Published - Feb 22 2022 |
Externally published | Yes |
Bibliographical note
Funding Information:We thank Drs. Friedhelm Hildebrandt, Robert Weinberg, Jeffrey Wrana, Daniel Haber, Stefan Wiemann, and Tohru Itoh for plasmids and Dr. Raya Eilam-Altstadter for histology analyses. This work was performed in the Marvin Tanner Laboratory for Research on Cancer. Y.Y. is the incumbent of the Harold and Zelda Goldenberg Professorial Chair in Molecular Cell Biology. Our studies have been supported by the Israel Science Foundation ( ISF ), the Israel Cancer Research Fund ( ICRF ), the European Research Council ( ERC ), and the Dr. Miriam and Sheldon G. Adelson Medical Research Foundation ( AMRF ).
Publisher Copyright:
© 2022
Keywords
- breast cancer
- cancer hallmark
- EGF/ERK
- importin
- metastasis
- nuclear pore
- nuclear transport
- TGF-β/SMAD
- transcription factor
- WNT/β-catenin
PubMed: MeSH publication types
- Journal Article
- Research Support, Non-U.S. Gov't