Abstract
We use diatomics-in-molecules theory to estimate the nuclear-motion contributions to atom-diatom potential energy surfaces for reactive systems, with special emphasis on the saddle point region. We examine the reactions of H, O, F, and Cl with H2 and H with Cl2. Nuclear-motion corrections at the saddle point are in the range 0.007-0.07 kcal/mol for cases with one or two hydrogens and classical barrier heights in the range 0.7-3 kcal/mol and are about 0.2 kcal/mol for cases with two hydrogens and classical barrier heights in the range 8-12 kcal/mol. For F+H2 with parameters such that the predicted nuclear-motion correction is 0.03 kcal/mol at the saddle point, the correction is as large as 0.2 kcal/mol elsewhere on the surface. Isotopic substitution of D for H changes the classical barrier height by 0.003-0.1 kcal/mol for the cases studied.
Original language | English (US) |
---|---|
Pages (from-to) | 4543-4547 |
Number of pages | 5 |
Journal | The Journal of chemical physics |
Volume | 82 |
Issue number | 10 |
DOIs | |
State | Published - Jan 1 1985 |