TY - JOUR
T1 - Nuclear EGFRvIII-STAT5b complex contributes to glioblastoma cell survival by direct activation of the Bcl-XL promoter
AU - Latha, Khatri
AU - Li, Ming
AU - Chumbalkar, Vaibhav
AU - Gururaj, Anupama
AU - Hwang, Yeohyeon
AU - Dakeng, Sumana
AU - Sawaya, Raymond
AU - Aldape, Kenneth
AU - Cavenee, Webster K.
AU - Bogler, Oliver
AU - Furnari, Frank B.
PY - 2013/2/1
Y1 - 2013/2/1
N2 - Aberrant EGFR signaling strongly promotes glioma malignancy and treatment resistance. The most prevalent mutation, ΔEGFR/EGFRvIII, is an in-frame deletion of the extracellular domain, which occurs in more than 25% of glioblastomas and enhances growth and survival of tumor cells. Paradoxically, the signaling of the potent oncogene ΔEGFR is of low intensity, raising the question of whether it exhibits preferential signaling to key downstream targets. We have observed levels of phosphorylation of STAT5 at position Y699 in cells expressing ΔEGFR that are similar or higher than in cells that overexpress EGFR and are acutely stimulated with EGF, prompting us to investigate the role of STAT5 activation in glioblastoma. Here, we show that in human glioblastoma samples, pSTAT5 levels correlated positively with EGFR expression and were associated with reduced survival. Interestingly, the activation of STAT5b downstream of ΔEGFR was dependent on SFKs, while the signal from acutely EGF-stimulated EGFR to STAT5b involved other kinases. Phosphorylated STAT5b and ΔEGFR associated in the nucleus, bound DNA and were found on promoters known to be regulated by STAT5 including that of the Aurora A gene. ΔEGFR cooperated with STAT5b to regulate the Bcl-XL promoter and knockdown of STAT5b suppressed anchorage independent growth, reduced the levels of Bcl-XL and sensitized glioblastoma cells to cisplatin. Together these results delineate a novel association of nuclear ΔEGFR with STAT5b, which promotes oncogenesis and treatment resistance in glioblastoma by direct regulation of anti-apoptotic gene, Bcl-XL. What's new? EGFRvIII (ΔEGFR), characterized by deletion of exons 2-7 in the epidermal growth factor receptor transcript, occurs in more than 25 percent of glioblastomas and is associated with enhanced tumor growth and survival. In this study, EGFRvIII was found to interact with the transcription factor STAT5b, forming a nuclear complex that promoted oncogenesis and treatment resistance in glioblastoma through direct regulation of the anti-apoptotic gene Bcl-XL. These findings may have important implications for the treatment of glioblastoma.
AB - Aberrant EGFR signaling strongly promotes glioma malignancy and treatment resistance. The most prevalent mutation, ΔEGFR/EGFRvIII, is an in-frame deletion of the extracellular domain, which occurs in more than 25% of glioblastomas and enhances growth and survival of tumor cells. Paradoxically, the signaling of the potent oncogene ΔEGFR is of low intensity, raising the question of whether it exhibits preferential signaling to key downstream targets. We have observed levels of phosphorylation of STAT5 at position Y699 in cells expressing ΔEGFR that are similar or higher than in cells that overexpress EGFR and are acutely stimulated with EGF, prompting us to investigate the role of STAT5 activation in glioblastoma. Here, we show that in human glioblastoma samples, pSTAT5 levels correlated positively with EGFR expression and were associated with reduced survival. Interestingly, the activation of STAT5b downstream of ΔEGFR was dependent on SFKs, while the signal from acutely EGF-stimulated EGFR to STAT5b involved other kinases. Phosphorylated STAT5b and ΔEGFR associated in the nucleus, bound DNA and were found on promoters known to be regulated by STAT5 including that of the Aurora A gene. ΔEGFR cooperated with STAT5b to regulate the Bcl-XL promoter and knockdown of STAT5b suppressed anchorage independent growth, reduced the levels of Bcl-XL and sensitized glioblastoma cells to cisplatin. Together these results delineate a novel association of nuclear ΔEGFR with STAT5b, which promotes oncogenesis and treatment resistance in glioblastoma by direct regulation of anti-apoptotic gene, Bcl-XL. What's new? EGFRvIII (ΔEGFR), characterized by deletion of exons 2-7 in the epidermal growth factor receptor transcript, occurs in more than 25 percent of glioblastomas and is associated with enhanced tumor growth and survival. In this study, EGFRvIII was found to interact with the transcription factor STAT5b, forming a nuclear complex that promoted oncogenesis and treatment resistance in glioblastoma through direct regulation of the anti-apoptotic gene Bcl-XL. These findings may have important implications for the treatment of glioblastoma.
KW - Bcl-XL
KW - STAT5b
KW - glioma transcriptional regulation
KW - nuclear EGFRvIII/ΔEGFR
UR - http://www.scopus.com/inward/record.url?scp=84870239957&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84870239957&partnerID=8YFLogxK
U2 - 10.1002/ijc.27690
DO - 10.1002/ijc.27690
M3 - Article
C2 - 22729867
AN - SCOPUS:84870239957
SN - 0020-7136
VL - 132
SP - 509
EP - 520
JO - International Journal of Cancer
JF - International Journal of Cancer
IS - 3
ER -