Abstract
Creatinine-based glomerular filtration rate estimation (eGFRcr) has been improved and refined since the 1970s through both the Modification of Diet in Renal Disease (MDRD) Study equation in 1999 and the CKD Epidemiology Collaboration (CKD-EPI) equation in 2009, with current clinical practice dependent primarily on eGFR for accurate assessment of GFR. However, researchers and clinicians have recognized limitations of relying on creatinine as the only filtration marker, which can lead to inaccurate GFR estimates in certain populations due to the influence of non-GFR determinants of serum or plasma creatinine. Therefore, recent literature has proposed incorporation of multiple serum or plasma filtration markers into GFR estimation to improve precision and accuracy and decrease the impact of non-GFR determinants for any individual biomarker. To this end, the CKD-EPI combined creatinine-cystatin C equation (eGFRcr-cys) was developed in 2012 and demonstrated superior accuracy to equations relying on creatinine or cystatin C alone (eGFRcr or eGFRcys). Now, the focus has broadened to include additional novel filtration markers to further refine and improve GFR estimation. Beta-2-microglobulin (B2M) and beta-trace-protein (BTP) are two filtration markers with established assays that have been proposed as candidates for improving both GFR estimation and risk prediction. GFR estimating equations based on B2M and BTP have been developed and validated, with the CKD-EPI combined BTP-B2M equation (eGFRBTP-B2M) demonstrating similar performance to eGFR and eGFR. Additionally, several studies have demonstrated that both B2M and BTP are associated with outcomes in CKD patients, including cardiovascular events, ESRD and mortality. This review will primarily focus on these two biomarkers, and will highlight efforts to identify additional candidate biomarkers through metabolomics-based approaches.
Original language | English (US) |
---|---|
Pages (from-to) | 277-288 |
Number of pages | 12 |
Journal | EJIFCC |
Volume | 28 |
Issue number | 4 |
State | Published - Dec 2017 |
PubMed: MeSH publication types
- Journal Article