TY - GEN
T1 - Nonparametric sparse hierarchical models describe V1 fMRI responses to natural images
AU - Ravikumar, Pradeep
AU - Vu, Vincent Q.
AU - Yu, Bin
AU - Naselaris, Thomas
AU - Kay, Kendrick N.
AU - Gallant, Jack L.
PY - 2009
Y1 - 2009
N2 - We propose a novel hierarchical, nonlinear model that predicts brain activity in area V1 evoked by natural images. In the study reported here brain activity was measured by means of functional magnetic resonance imaging (fMRI), a noninvasive technique that provides an indirect measure of neural activity pooled over a small volume (≈2mm cube) of brain tissue. Our model, which we call the V-SPAM model, is based on the reasonable assumption that fMRI measurements reflect the (possibly nonlinearly) pooled, rectified output of a large population of simple and complex cells in V1. It has a hierarchical filtering stage that consists of three layers: model simple cells, model complex cells, and a third layer in which the complex cells are linearly pooled (called "pooled-complex" cells). The pooling stage then obtains the measured fMRI signals as a sparse additive model (SpAM) in which a sparse nonparametric (nonlinear) combination of model complex cell and model pooled-complex cell outputs are summed. Our results show that the V-SPAM model predicts fMRI responses evoked by natural images better than a benchmark model that only provides linear pooling of model complex cells. Furthermore, the spatial receptive fields, frequency tuning and orientation tuning curves of the V-SPAM model estimated for each voxel appears to be consistent with the known properties of V1, and with previous analyses of this data set. A visualization procedure applied to the V-SPAM model shows that most of the nonlinear pooling consists of simple compressive or saturating nonlinearities.
AB - We propose a novel hierarchical, nonlinear model that predicts brain activity in area V1 evoked by natural images. In the study reported here brain activity was measured by means of functional magnetic resonance imaging (fMRI), a noninvasive technique that provides an indirect measure of neural activity pooled over a small volume (≈2mm cube) of brain tissue. Our model, which we call the V-SPAM model, is based on the reasonable assumption that fMRI measurements reflect the (possibly nonlinearly) pooled, rectified output of a large population of simple and complex cells in V1. It has a hierarchical filtering stage that consists of three layers: model simple cells, model complex cells, and a third layer in which the complex cells are linearly pooled (called "pooled-complex" cells). The pooling stage then obtains the measured fMRI signals as a sparse additive model (SpAM) in which a sparse nonparametric (nonlinear) combination of model complex cell and model pooled-complex cell outputs are summed. Our results show that the V-SPAM model predicts fMRI responses evoked by natural images better than a benchmark model that only provides linear pooling of model complex cells. Furthermore, the spatial receptive fields, frequency tuning and orientation tuning curves of the V-SPAM model estimated for each voxel appears to be consistent with the known properties of V1, and with previous analyses of this data set. A visualization procedure applied to the V-SPAM model shows that most of the nonlinear pooling consists of simple compressive or saturating nonlinearities.
UR - http://www.scopus.com/inward/record.url?scp=84858788948&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84858788948&partnerID=8YFLogxK
M3 - Conference contribution
AN - SCOPUS:84858788948
SN - 9781605609492
T3 - Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
SP - 1337
EP - 1344
BT - Advances in Neural Information Processing Systems 21 - Proceedings of the 2008 Conference
PB - Neural Information Processing Systems
T2 - 22nd Annual Conference on Neural Information Processing Systems, NIPS 2008
Y2 - 8 December 2008 through 11 December 2008
ER -