Nonlocal electromagnetic response of graphene nanostructures

Arya Fallahi, Tony Low, Michele Tamagnone, Julien Perruisseau-Carrier

Research output: Contribution to journalArticlepeer-review

18 Scopus citations

Abstract

Nonlocal electromagnetic effects of graphene arise from its naturally dispersive dielectric response. We present semianalytical solutions of nonlocal Maxwell's equations for graphene nanoribbon arrays with features around 100 nm, where we found prominent departures from its local response. Interestingly, the nonlocal corrections are stronger for light polarization parallel to the ribbons, which manifests as an additional broadening of the Drude peak. For the perpendicular polarization case, nonlocal effects lead to blue-shifts of the plasmon peaks. These manifestations provide a physical measure of nonlocal effects, and we quantify their dependence on the ribbon width, doping, and wavelength.

Original languageEnglish (US)
Article number121405
JournalPhysical Review B - Condensed Matter and Materials Physics
Volume91
Issue number12
DOIs
StatePublished - Mar 9 2015

Bibliographical note

Publisher Copyright:
© 2015 American Physical Society.

Fingerprint

Dive into the research topics of 'Nonlocal electromagnetic response of graphene nanostructures'. Together they form a unique fingerprint.

Cite this