Nonidentifiability in Model Calibration and Implications for Medical Decision Making

Fernando Alarid-Escudero, Richard F Maclehose, Yadira Peralta, Karen M Kuntz, Eva Enns

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

Background. Calibration is the process of estimating parameters of a mathematical model by matching model outputs to calibration targets. In the presence of nonidentifiability, multiple parameter sets solve the calibration problem, which may have important implications for decision making. We evaluate the implications of nonidentifiability on the optimal strategy and provide methods to check for nonidentifiability. Methods. We illustrate nonidentifiability by calibrating a 3-state Markov model of cancer relative survival (RS). We performed 2 different calibration exercises: 1) only including RS as a calibration target and 2) adding the ratio between the 2 nondeath states over time as an additional target. We used the Nelder-Mead (NM) algorithm to identify parameter sets that best matched the calibration targets. We used collinearity and likelihood profile analyses to check for nonidentifiability. We then estimated the benefit of a hypothetical treatment in terms of life expectancy gains using different, but equally good-fitting, parameter sets. We also applied collinearity analysis to a realistic model of the natural history of colorectal cancer. Results. When only RS is used as the calibration target, 2 different parameter sets yield similar maximum likelihood values. The high collinearity index and the bimodal likelihood profile on both parameters demonstrated the presence of nonidentifiability. These different, equally good-fitting parameter sets produce different estimates of the treatment effectiveness (0.67 v. 0.31 years), which could influence the optimal decision. By incorporating the additional target, the model becomes identifiable with a collinearity index of 3.5 and a unimodal likelihood profile. Conclusions. In the presence of nonidentifiability, equally likely parameter estimates might yield different conclusions. Checking for the existence of nonidentifiability and its implications should be incorporated into standard model calibration procedures.

Original languageEnglish (US)
Pages (from-to)810-821
Number of pages12
JournalMedical Decision Making
Volume38
Issue number7
DOIs
StatePublished - Oct 1 2018

Bibliographical note

Publisher Copyright:
© The Author(s) 2018.

Keywords

  • calibration
  • decision-analytic models
  • estimation
  • likelihood function
  • nonidentifiability

Fingerprint

Dive into the research topics of 'Nonidentifiability in Model Calibration and Implications for Medical Decision Making'. Together they form a unique fingerprint.

Cite this