Abstract
Targeting of Ags directly to dendritic cells (DCs) through anti-DC receptor Ab fused to Ag proteins is a promising approach to vaccine development. However, not all Ags can be expressed as a rAb directly fused to a protein Ag. In this study, we show that noncovalent assembly of Ab-Ag complexes, mediated by interaction between dockerin and cohesin domains from cellulose-degrading bacteria, can greatly expand the range of Ags for this DC-targeting vaccine technology. rAbs with a dockerin domain fused to the rAb H chain C terminus are efficiently secreted by mammalian cells, and many Ags not secreted as rAb fusion proteins are readily expressed as cohesin directly fused to Ag either via secretion from mammalian cells or as soluble cytoplasmic Escherichia coli products. These form very stable and homogeneous complexes with rAb fused to dockerin. In vitro, these complexes can efficiently bind to human DC receptors followed by presentation to Ag-specific CD4+ and CD8+ T cells. Low doses of the HA1 subunit of influenza hemagglutinin conjugated through this means to anti-Langerin rAbs elicited Flu HA1-specific Ab and T cell responses in mice. Thus, the noncovalent assembly of rAb and Ag through dockerin and cohesin interaction provides a useful modular strategy for development and testing of prototype vaccines for elicitation of Ag-specific T and B cell responses, particularly when direct rAb fusions to Ag cannot be expressed.
Original language | English (US) |
---|---|
Pages (from-to) | 2645-2655 |
Number of pages | 11 |
Journal | Journal of Immunology |
Volume | 189 |
Issue number | 5 |
DOIs | |
State | Published - Sep 1 2012 |