Noncanonical Roles of Caspase-4 and Caspase-5 in Heme-Driven IL-1β Release and Cell Death

Beatriz E. Bolívar, Alexandra N. Brown-Suedel, Brittany A. Rohrman, Chloé I. Charendoff, Vanda Yazdani, John D. Belcher, Gregory M. Vercellotti, Jonathan M. Flanagan, Lisa Bouchier-Hayes

Research output: Contribution to journalArticlepeer-review

26 Scopus citations

Abstract

Excessive release of heme from RBCs is a key pathophysiological feature of several disease states, including bacterial sepsis, malaria, and sickle cell disease. This hemolysis results in an increased level of free heme that has been implicated in the inflammatory activation of monocytes, macrophages, and the endothelium. In this study, we show that extracellular heme engages the human inflammatory caspases, caspase-1, caspase-4, and caspase-5, resulting in the release of IL-1β. Heme-induced IL-1β release was further increased in macrophages from patients with sickle cell disease. In human primary macrophages, heme activated caspase-1 in an inflammasome-dependent manner, but heme-induced activation of caspase-4 and caspase-5 was independent of canonical inflammasomes. Furthermore, we show that both caspase-4 and caspase-5 are essential for heme-induced IL-1β release, whereas caspase-4 is the primary contributor to heme-induced cell death. Together, we have identified that extracellular heme is a damage-associated molecular pattern that can engage canonical and noncanonical inflammasome activation as a key mediator of inflammation in macrophages.

Original languageEnglish (US)
Pages (from-to)1878-1889
Number of pages12
JournalJournal of Immunology
Volume206
Issue number8
DOIs
StatePublished - Apr 15 2021

Bibliographical note

Publisher Copyright:
Copyright Ó 2021 by The American Association of Immunologists, Inc. 0022-1767/21/$37.50

Keywords

  • Alarmins/metabolism
  • Anemia, Sickle Cell/metabolism
  • Caspases/metabolism
  • Caspases, Initiator/metabolism
  • Cell Death
  • Cells, Cultured
  • Erythrocytes/physiology
  • Heme/metabolism
  • Hemolysis
  • Humans
  • Inflammasomes/metabolism
  • Inflammation/metabolism
  • Interleukin-1beta/metabolism
  • Macrophages/immunology
  • Up-Regulation

PubMed: MeSH publication types

  • Research Support, Non-U.S. Gov't
  • Journal Article
  • Research Support, N.I.H., Extramural

Fingerprint

Dive into the research topics of 'Noncanonical Roles of Caspase-4 and Caspase-5 in Heme-Driven IL-1β Release and Cell Death'. Together they form a unique fingerprint.

Cite this