Non-diffusive thermal transport in GaAs at micron length scales

Jeremy A. Johnson, Jeffrey K. Eliason, Alexei A. Maznev, Tengfei Luo, Keith A. Nelson

Research output: Contribution to journalArticlepeer-review

19 Scopus citations

Abstract

We use a transient thermal grating technique in reflection geometry to measure the effective thermal diffusivity in GaAs as a function of heat transfer distance at three temperatures. Utilizing heterodyne detection, we isolate the "amplitude" grating contribution of the transient grating signal, which encodes the thermal transport dynamics. As the thermal grating period decreases, and thus the heat-transfer distance, we observe a reduction in the effective thermal diffusivity, indicating a departure from diffusive behavior. Non-diffusive behavior is observed at room temperature, as well as low temperature (180 K) and high temperature (425 K). At the shortest thermal grating period measured corresponding to a heat transfer distance of approximately 1 μm, the effective diffusivity drops to a value roughly 50% of the bulk thermal diffusivity. These measurements show the utility of the reflection transient thermal grating technique to measure thermal transport properties of opaque materials.

Original languageEnglish (US)
Article number155104
JournalJournal of Applied Physics
Volume118
Issue number15
DOIs
StatePublished - Oct 21 2015

Fingerprint Dive into the research topics of 'Non-diffusive thermal transport in GaAs at micron length scales'. Together they form a unique fingerprint.

Cite this