Noise reduction in gravitational-wave data via deep learning

Rich Ormiston, Tri Nguyen, Michael Coughlin, Rana X. Adhikari, Erik Katsavounidis

Research output: Contribution to journalArticlepeer-review

51 Scopus citations

Abstract

With the advent of gravitational-wave astronomy, techniques to extend the reach of gravitational-wave detectors are desired. In addition to the stellar-mass black hole and neutron star mergers already detected, many more are below the surface of the noise, available for detection if the noise is reduced enough. Our method (DeepClean) applies machine-learning algorithms to gravitational-wave detector data and data from on-site sensors monitoring the instrument to reduce the noise in the time series due to instrumental artifacts and environmental contamination. This framework is generic enough to subtract linear, nonlinear, and nonstationary coupling mechanisms. It may also provide handles in learning about the mechanisms which are not currently understood to be limiting detector sensitivities. The robustness of the noise-reduction technique in its ability to efficiently remove noise with no unintended effects on gravitational-wave signals is also addressed through software signal injection and parameter estimation of the recovered signal. It is shown that the optimal signal-to-noise ratio (SNR) of the injected signal is enhanced by ≈21.6% and the recovered parameters are consistent with the injected set. We present the performance of this algorithm on linear and nonlinear noise sources and discuss its impact on astrophysical searches by gravitational-wave detectors.

Original languageEnglish (US)
Article number033066
JournalPhysical Review Research
Volume2
Issue number3
DOIs
StatePublished - Jul 2020

Bibliographical note

Publisher Copyright:
© 2020 authors. Published by the American Physical Society. Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI.

Fingerprint

Dive into the research topics of 'Noise reduction in gravitational-wave data via deep learning'. Together they form a unique fingerprint.

Cite this