TY - JOUR
T1 - Nitrogen deficiency in maize fields of the Southern Pampas does not affect kernel number but reduces weight per kernel.
AU - Moises, Clara
AU - Andrade, Fernando H.
AU - Monzon, Juan P.
AU - Reussi Calvo, Nahuel I.
AU - Cerrudo, Anibal
N1 - Publisher Copyright:
© 2024 Elsevier B.V.
PY - 2024/5/15
Y1 - 2024/5/15
N2 - Nitrogen (N) requirement of maize has been increasing over the past decades, but there has been a lack of adjustment in fertilization management practices across different regions in Argentina. The higher N requirement in modern hybrids is associated with a higher post-flowering N accumulation. Additionally, soil fertility in the Argentina Pampas has consistently decreased in recent years. Whether the effects of N deficiency are expressed in the post-flowering period is still unclear at field level. The objective of this work was to quantify the yield reduction attributed to N deficiency and to identify the physiological basis of this effect at the field level for typical high-tech farms across the south-eastern Pampas of Argentina. Nineteen experiments were conducted during the 2020/2021 growing season in the south-eastern Pampas, evaluating two N managements i) Farmers' N level; ii) High N input. Results showed that the additional N input increased grain yield by an average of 6.4% (average grain yield difference of 712 kg ha−1). Weight per kernel was the only yield component that responded to N fertilization. Farmers' N management did not affect N accumulation or growth-related variables such as leaf area index, green leaves per plant, PAR interception, nitrogen sufficiency index until flowering, but the farmers' N level reduced these variables during the grain filling period leading to differences in aerial biomass and N accumulated at physiological maturity. Farmers' N level led to decreased post-flowering N uptake during grain filling period, which reduced the photosynthetic capacity of the canopy. These findings suggest that N management strategies and models need to be reviewed for high-tech maize systems.
AB - Nitrogen (N) requirement of maize has been increasing over the past decades, but there has been a lack of adjustment in fertilization management practices across different regions in Argentina. The higher N requirement in modern hybrids is associated with a higher post-flowering N accumulation. Additionally, soil fertility in the Argentina Pampas has consistently decreased in recent years. Whether the effects of N deficiency are expressed in the post-flowering period is still unclear at field level. The objective of this work was to quantify the yield reduction attributed to N deficiency and to identify the physiological basis of this effect at the field level for typical high-tech farms across the south-eastern Pampas of Argentina. Nineteen experiments were conducted during the 2020/2021 growing season in the south-eastern Pampas, evaluating two N managements i) Farmers' N level; ii) High N input. Results showed that the additional N input increased grain yield by an average of 6.4% (average grain yield difference of 712 kg ha−1). Weight per kernel was the only yield component that responded to N fertilization. Farmers' N management did not affect N accumulation or growth-related variables such as leaf area index, green leaves per plant, PAR interception, nitrogen sufficiency index until flowering, but the farmers' N level reduced these variables during the grain filling period leading to differences in aerial biomass and N accumulated at physiological maturity. Farmers' N level led to decreased post-flowering N uptake during grain filling period, which reduced the photosynthetic capacity of the canopy. These findings suggest that N management strategies and models need to be reviewed for high-tech maize systems.
KW - Nitrogen - Maize yield gap - Grain filling period - Yield components - N deficiency - On-farm experiment
UR - https://www.scopus.com/pages/publications/85192004325
UR - https://www.scopus.com/inward/citedby.url?scp=85192004325&partnerID=8YFLogxK
U2 - 10.1016/j.fcr.2024.109394
DO - 10.1016/j.fcr.2024.109394
M3 - Article
AN - SCOPUS:85192004325
SN - 0378-4290
VL - 312
JO - Field Crops Research
JF - Field Crops Research
M1 - 109394
ER -