Nitrate in groundwater and water sources used by riparian trees in an agricultural watershed: A chemical and isotopic investigation in southern Minnesota

Stephen C. Komor, Joseph A. Magner

Research output: Contribution to journalArticlepeer-review

32 Scopus citations


This study evaluates processes that affect nitrate concentrations in groundwater beneath riparian zones in an agricultural watershed. Nitrate pathways in the upper 2 m of groundwater were investigated beneath wooded and grass-shrub riparian zones next to cultivated fields. Because trees can be important components of the overall nitrate pathway in wooded riparian zones, water sources used by riparian trees and possible effects of trees on nitrate concentrations in groundwater were also investigated. Average nitrate concentrations in shallow groundwater beneath the cultivated fields were 5.5 mg/L upgradient of the wooded riparian zone and 3.5 mg/L upgradient of the grass-shrub zone. Shallow groundwater beneath the fields passed through the riparian zones and discharged into streams that had average nitrate concentrations of 8.5 mg/L (as N). Lateral variations of δD values in groundwater showed that mixing among different water sources occurred beneath the riparian zones. In the wooded riparian zone, nitrate concentrations in shallow groundwater were diluted by upwelling, nitrate- poor, deep groundwater. Upwelling deep groundwater contained ammonium with a δ15N of 5‰ that upon nitrification and mixing with nitrate in shallow groundwater caused nitrate δ15N values in shallow groundwater to decrease by as much as 19.5‰. Stream water penetrated laterally beneath the wooded riparian zone as far as 19 m from the stream's edge and beneath the grass- shrub zone as far as 27 m from the stream's edge. Nitrate concentrations in shallow groundwater immediately upgradient of where it mixed with stream water averaged 0.4 mg/L in the wooded riparian zone and 0.8 mg/L near the grass-shrub riparian zone. Nitrate concentrations increased toward the streams because of mixing with nitrate-rich stream water. Because nitrate concentrations were larger in stream water than shallow groundwater, concentrated nitrate in the streams cannot have come from shallow groundwater at these sites. Water sources of riparian trees were identified by comparing δD values of sap water, soil water, groundwater, and stream water. Soil water was the main water source for trees in the outer 4 to 6 m of one part of the wooded riparian zone and outer 10 m of another part. Groundwater was a significant water source for trees closer to the streams where the water table was less than about 2.1 to 2.7 m below the surface. No evidence was found in the nitrate concentration profiles that trees close to the streams that took up groundwater through their roots also took up nitrate from groundwater. The lack of such evidence is attributed to the nitrate concentration profiles being insufficiently sensitive indicators of nitrate removal by trees.

Original languageEnglish (US)
Pages (from-to)1039-1050
Number of pages12
JournalWater Resources Research
Issue number4
StatePublished - Apr 1996
Externally publishedYes


Dive into the research topics of 'Nitrate in groundwater and water sources used by riparian trees in an agricultural watershed: A chemical and isotopic investigation in southern Minnesota'. Together they form a unique fingerprint.

Cite this