NHE3 serves as a molecular tool for cAMP-mediated regulation of receptor-mediated endocytosis

Michael Gekle, Oscar K. Serrano, Karina Drumm, Sigrid Mildenberger, Ruth Freudinger, Birgit Gassner, Hans Willi Jansen, Erik I. Christensen

Research output: Contribution to journalArticlepeer-review

36 Scopus citations


Receptor-mediated, clathrin-dependent endocytosis (RME) is important for macromolecular transport and regulation of cell-surface protein expression. Pharmacological studies have shown that the plasma membrane transport protein Na+/H+ exchanger 3 (NHE3), which shuttles between the plasma membrane and the early endosomal compartment by means of clathrin-mediated endocytosis, contributes to endosomal pH homeostasis and endocytic fusion events. Furthermore, it is known that NHE3 is phosphorylated and inhibited by cAMP-dependent kinase (protein kinase A). Here, we show, in a cellular knockout/ retransfection approach, that NHE3 supports RME and confers cAMP sensitivity to RME, using megalin/cubilin- mediated albumin uptake in opossum kidney cells. RME, but not fluid-phase endocytosis, was dependent on NHE3 activity and expression. Furthermore, NHE3 deficiency or inhibition reduced the relative surface expression of megalin without altering total expression. In wild-type cells, cAMP inhibits NHE3 activity, leads to endosomal alkalinization, and reduces RME. In NHE3-deficient cells, endosomal pH is not sensitive to NHE3 inhibition, and cAMP does not affect endosomal pH or RME. NHE3 transfection into deficient cells restores RME and the effects of cAMP. Thus our data show that NHE3 is important for cAMP sensitivity of clathrin-dependent RME.

Original languageEnglish (US)
Pages (from-to)F549-F558
JournalAmerican Journal of Physiology - Renal Physiology
Issue number3 52-3
StatePublished - Sep 2002


  • Adenosine 3′,5′-cyclic monophosphate
  • Endocytosis
  • Megalin
  • PH
  • Sodium/hydrogen exchanger 3


Dive into the research topics of 'NHE3 serves as a molecular tool for cAMP-mediated regulation of receptor-mediated endocytosis'. Together they form a unique fingerprint.

Cite this