Abstract
Nuclear factor-κB (NF-κB) is generally believed to be pro-tumorigenic. Here we report a tumor-suppressive function for NF-κB1, the prototypical member of NF-κB. While NF-κB1 downregulation is associated with high lung cancer risk in humans and poor patient survival, NF-κB1-deficient mice are more vulnerable to lung tumorigenesis induced by the smoke carcinogen, urethane. Notably, the tumor-suppressive function of NF-κB1 is independent of its classical role as an NF-κB factor, but instead through stabilization of the Tpl2 kinase. NF-κB1-deficient tumors exhibit 'normal' NF-κB activity, but a decreased protein level of Tpl2. Reconstitution of Tpl2 or the NF-κB1 p105, but not p50 (the processed product of p105), inhibits the tumorigenicity of NF-κB1-deficient lung tumor cells. Remarkably, Tpl2-knockout mice resemble NF-κB1 knockouts in urethane-induced lung tumorigenesis. Mechanistic studies indicate that p105/Tpl2 signaling is required for suppressing urethane-induced lung damage and inflammation, and activating mutations of the K-Ras oncogene. These studies reveal an unexpected, NF-κB-independent but Tpl2-depenednt role of NF-κB1 in lung tumor suppression. These studies also reveal a previously unexplored role of p105/Tpl2 signaling in lung homeostasis.
Original language | English (US) |
---|---|
Pages (from-to) | 2299-2310 |
Number of pages | 12 |
Journal | Oncogene |
Volume | 35 |
Issue number | 18 |
DOIs | |
State | Published - May 5 2016 |
Bibliographical note
Funding Information:We thank Dr Philip N Tsichlis for providing us the Tpl2Δ/Δ mice. This study was supported in part by the National Institute of Health (NIH)/National Cancer Institute (NCI) grants R01 CA172090, R21 CA175252, R21 CA189703, P30 CA047904 and P50 CA090440-Lung Cancer Developmental Research Award, as well as the American Lung Association (ALA) Lung Cancer Discovery Award and American Cancer Society (ACS) Fellowship PF-12-081-01-TBG.
Publisher Copyright:
© 2016 Macmillan Publishers Limited All rights reserved.