TY - JOUR
T1 - New results on Hermitian matrix rank-one decomposition
AU - Ai, Wenbao
AU - Huang, Yongwei
AU - Zhang, Shuzhong
PY - 2011/6
Y1 - 2011/6
N2 - In this paper, we present several new rank-one decomposition theorems for Hermitian positive semidefinite matrices, which generalize our previous results in Huang and Zhang (Math Oper Res 32(3):758-768, 2007), Ai and Zhang (SIAM J Optim 19(4):1735-1756, 2009). The new matrix rank-one decomposition theorems appear to have wide applications in theory as well as in practice. On the theoretical side, for example, we show how to further extend some of the classical results including a lemma due to Yuan (Math Program 47:53-63, 1990), the classical results on the convexity of the joint numerical ranges (Pang and Zhang in Unpublished Manuscript, 2004; Au-Yeung and Poon in Southeast Asian Bull Math 3:85-92, 1979), and the so-called Finsler's lemma (Bohnenblust in Unpublished Manuscript; Au-Yeung and Poon in Southeast Asian Bull Math 3:85-92, 1979). On the practical side, we show that the new results can be applied to solve two typical problems in signal processing and communication: one for radar code optimization and the other for robust beamforming. The new matrix decomposition theorems are proven by construction in this paper, and we demonstrate that the constructive procedures can be implemented efficiently, stably, and accurately. The URL of our Matlab programs is given in this paper. We strongly believe that the new decomposition procedures, as a means to solve non-convex quadratic optimization with a few quadratic constraints, are useful for many other potential engineering applications.
AB - In this paper, we present several new rank-one decomposition theorems for Hermitian positive semidefinite matrices, which generalize our previous results in Huang and Zhang (Math Oper Res 32(3):758-768, 2007), Ai and Zhang (SIAM J Optim 19(4):1735-1756, 2009). The new matrix rank-one decomposition theorems appear to have wide applications in theory as well as in practice. On the theoretical side, for example, we show how to further extend some of the classical results including a lemma due to Yuan (Math Program 47:53-63, 1990), the classical results on the convexity of the joint numerical ranges (Pang and Zhang in Unpublished Manuscript, 2004; Au-Yeung and Poon in Southeast Asian Bull Math 3:85-92, 1979), and the so-called Finsler's lemma (Bohnenblust in Unpublished Manuscript; Au-Yeung and Poon in Southeast Asian Bull Math 3:85-92, 1979). On the practical side, we show that the new results can be applied to solve two typical problems in signal processing and communication: one for radar code optimization and the other for robust beamforming. The new matrix decomposition theorems are proven by construction in this paper, and we demonstrate that the constructive procedures can be implemented efficiently, stably, and accurately. The URL of our Matlab programs is given in this paper. We strongly believe that the new decomposition procedures, as a means to solve non-convex quadratic optimization with a few quadratic constraints, are useful for many other potential engineering applications.
KW - Joint numerical range
KW - Matrix rank-one decomposition
KW - Positive semidefinite Hermitian matrix
KW - Quadratic optimization
UR - http://www.scopus.com/inward/record.url?scp=79957939502&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79957939502&partnerID=8YFLogxK
U2 - 10.1007/s10107-009-0304-7
DO - 10.1007/s10107-009-0304-7
M3 - Article
AN - SCOPUS:79957939502
SN - 0025-5610
VL - 128
SP - 253
EP - 283
JO - Mathematical Programming
JF - Mathematical Programming
IS - 1-2
ER -