TY - JOUR
T1 - New proofs of identities of Lebesgue and Göllnitz via tilings
AU - Little, David P.
AU - Sellers, James A.
PY - 2009/1
Y1 - 2009/1
N2 - In 1840, V.A. Lebesgue proved the following two series-product identities:under(∑, n ≥ 0) frac((- 1 ; q)n, (q)n) q((n + 1; 2)) = under(∏, n ≥ 1) frac(1 + q2 n - 1, 1 - q2 n - 1),under(∑, n ≥ 0) frac((- q ; q)n, (q)n) q((n + 1; 2)) = under(∏, n ≥ 1) frac(1 - q4 n, 1 - qn) . These can be viewed as specializations of the following more general result:under(∑, n ≥ 0) frac((- z ; q)n, (q)n) q((n + 1; 2)) = under(∏, n ≥ 1) (1 + qn) (1 + z q2 n - 1) . There are numerous combinatorial proofs of this identity, all of which describe a bijection between different types of integer partitions. Our goal is to provide a new, novel combinatorial proof that demonstrates how both sides of the above identity enumerate the same collection of "weighted Pell tilings." In the process, we also provide a new proof of the Göllnitz identities.
AB - In 1840, V.A. Lebesgue proved the following two series-product identities:under(∑, n ≥ 0) frac((- 1 ; q)n, (q)n) q((n + 1; 2)) = under(∏, n ≥ 1) frac(1 + q2 n - 1, 1 - q2 n - 1),under(∑, n ≥ 0) frac((- q ; q)n, (q)n) q((n + 1; 2)) = under(∏, n ≥ 1) frac(1 - q4 n, 1 - qn) . These can be viewed as specializations of the following more general result:under(∑, n ≥ 0) frac((- z ; q)n, (q)n) q((n + 1; 2)) = under(∏, n ≥ 1) (1 + qn) (1 + z q2 n - 1) . There are numerous combinatorial proofs of this identity, all of which describe a bijection between different types of integer partitions. Our goal is to provide a new, novel combinatorial proof that demonstrates how both sides of the above identity enumerate the same collection of "weighted Pell tilings." In the process, we also provide a new proof of the Göllnitz identities.
KW - Göllnitz identities
KW - Lebesgue identities
KW - Pell numbers
KW - Rogers-Ramanujan identities
KW - Tilings
UR - http://www.scopus.com/inward/record.url?scp=55749114580&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=55749114580&partnerID=8YFLogxK
U2 - 10.1016/j.jcta.2008.05.004
DO - 10.1016/j.jcta.2008.05.004
M3 - Article
AN - SCOPUS:55749114580
SN - 0097-3165
VL - 116
SP - 223
EP - 231
JO - Journal of Combinatorial Theory. Series A
JF - Journal of Combinatorial Theory. Series A
IS - 1
ER -