Nematicity with a twist: Rotational symmetry breaking in a moiré superlattice

Rafael M. Fernandes, Jörn W.F. Venderbos

Research output: Contribution to journalArticlepeer-review

45 Scopus citations


Motivated by recent reports of nematic order in twisted bilayer graphene (TBG), we investigate the impact of the triangular moiré superlattice degrees of freedom on nematicity. In TBG, the nematic order parameter is not Ising like, as in tetragonal crystals, but has a three-state Potts character related to the threefold rotational symmetry (C3z) of the moiré superlattice. We find that, even in the presence of static strain that explicitly breaks the C3z symmetry, the system can still undergo a nematic-flop phase transition that spontaneously breaks in-plane twofold rotations. Moreover, elastic fluctuations, manifested as acoustic phonons, mediate a nemato-orbital coupling that ties the nematic director orientation to certain soft directions in momentum space, rendering the Potts-nematic transition mean field and first order. In contrast to the case of rigid crystals, the Fermi surface hot spots associated with these soft directions are maximally coupled to low-energy nematic fluctuations in the moiré superlattice case.

Original languageEnglish (US)
Article numbereaba8834
JournalScience Advances
Issue number32
StatePublished - Aug 2020

Bibliographical note

Funding Information:
We thank A. Chubukov, L. Fu, P. Jarillo-Herrero, J. Kang, H. Ochoa, H. C. Po, J. Schmalian, T. Senthil, and O. Vafek for fruitful discussions. R.M.F. was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, under award no. DE-SC0020045.

Publisher Copyright:
Copyright © 2020 The Authors


Dive into the research topics of 'Nematicity with a twist: Rotational symmetry breaking in a moiré superlattice'. Together they form a unique fingerprint.

Cite this