Natural-scene-based Steady-state Visual Evoked Potentials Reveal Effects of Short-term Monocular Deprivation

Lili Lyu, Sheng He, Yi Jiang, Stephen A. Engel, Min Bao

Research output: Contribution to journalArticlepeer-review

3 Scopus citations


Ocular dominance plasticity beyond the critical period has been demonstrated in adult humans in recent investigations of short-term monocular deprivation (MD). To our knowledge, all previous research adopted non-natural synthetic stimuli in testing perceptual ocular dominance before and after the MD. However, it is recognized that complex natural stimuli may engage cortical mechanisms substantially different from simple synthetic stimuli. Therefore, it remains largely unknown whether reshaping of ocular dominance following MD could be observed during perception of natural scene stimuli without conspicuous interocular competition. Here we used the steady-state visual evoked potential (SSVEP) technique to measure the ocular-specific neural effects of MD with natural scene stimuli where the two eyes’ images were tagged with different frequencies. Two hours of MD boosted the neural gain for the deprived eye. During the course of MD, the SSVEP amplitude ratio for the deprived eye compared to the non-deprived eye increased significantly over time, indicating a progressive increase of neural gain for the deprived eye. These findings demonstrate that the effects of short-term MD can manifest when viewing natural scenes, providing a natural case in support of the homeostatic compensation theory of MD. Our work also indicates that the technique of natural-scene-based SSVEP could be particularly useful for future work exploring the neural dynamics during adaptation to natural stimuli.

Original languageEnglish (US)
Pages (from-to)10-21
Number of pages12
StatePublished - May 21 2020

Bibliographical note

Funding Information:
We thank Ying Wang for her helpful comments. This research was supported by the National Natural Science Foundation of China ( 31571112 , 31871104 , 31525011 and 31830037 ) and the Key Research Program of Chinese Academy of Sciences ( XDB02010003 and QYZDB-SSW-SMC030 ).

Publisher Copyright:
© 2020 IBRO


  • Fourier phase
  • monocular deprivation
  • natural scene
  • ocular dominance
  • steady-state visual evoked potential (SSVEP)


Dive into the research topics of 'Natural-scene-based Steady-state Visual Evoked Potentials Reveal Effects of Short-term Monocular Deprivation'. Together they form a unique fingerprint.

Cite this