TY - JOUR
T1 - Natural processes in delta restoration
T2 - Application to the Mississippi Delta
AU - Paola, Chris
AU - Twilley, Robert R.
AU - Edmonds, Douglas A.
AU - Kim, Wonsuck
AU - Mohrig, David
AU - Parker, Gary
AU - Viparelli, Enrica
AU - Voller, Vaughan R.
PY - 2011
Y1 - 2011
N2 - Restoration of river deltas involves diverting sediment and water from major channels into adjoining drowned areas, where the sediment can build new land and provide a platform for regenerating wetland ecosystems. Except for local engineered structures at the points of diversion, restoration mainly relies on natural delta-building processes. Present understanding of such processes is sufficient to provide a basis for determining the feasibility of restoration projects through quantitative estimates of land-building rates and sustainable wetland area under different scenarios of sediment supply, subsidence, and sea-level rise. We are not yet to the point of being able to predict the evolution of a restored delta in detail. Predictions of delta evolution are based on field studies of active deltas, deltas in mine-tailings ponds, experimental deltas, and countless natural experiments contained in the stratigraphic record. These studies provide input for a variety of mechanistic delta models, ranging from radially averaged formulations to more detailed models that can resolve channels, topography, and ecosystem processes. Especially exciting areas for future research include understanding the mechanisms by which deltaic channel networks self-organize, grow, and distribute sediment and nutrients over the delta surface and coupling these to ecosystem processes, especially the interplay of topography, network geometry, and ecosystem dynamics.
AB - Restoration of river deltas involves diverting sediment and water from major channels into adjoining drowned areas, where the sediment can build new land and provide a platform for regenerating wetland ecosystems. Except for local engineered structures at the points of diversion, restoration mainly relies on natural delta-building processes. Present understanding of such processes is sufficient to provide a basis for determining the feasibility of restoration projects through quantitative estimates of land-building rates and sustainable wetland area under different scenarios of sediment supply, subsidence, and sea-level rise. We are not yet to the point of being able to predict the evolution of a restored delta in detail. Predictions of delta evolution are based on field studies of active deltas, deltas in mine-tailings ponds, experimental deltas, and countless natural experiments contained in the stratigraphic record. These studies provide input for a variety of mechanistic delta models, ranging from radially averaged formulations to more detailed models that can resolve channels, topography, and ecosystem processes. Especially exciting areas for future research include understanding the mechanisms by which deltaic channel networks self-organize, grow, and distribute sediment and nutrients over the delta surface and coupling these to ecosystem processes, especially the interplay of topography, network geometry, and ecosystem dynamics.
KW - channels
KW - coastlines
KW - ecology
KW - geomorphology
KW - stratigraphy
KW - wetlands
UR - http://www.scopus.com/inward/record.url?scp=79952995568&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=79952995568&partnerID=8YFLogxK
U2 - 10.1146/annurev-marine-120709-142856
DO - 10.1146/annurev-marine-120709-142856
M3 - Article
C2 - 21329199
AN - SCOPUS:79952995568
SN - 1941-1405
VL - 3
SP - 67
EP - 91
JO - Annual Review of Marine Science
JF - Annual Review of Marine Science
ER -