Nanosecond pulsed plasma activated C2H4/O2/Ar mixtures in a flow reactor

Suo Yang, Xiang Gao, Vigor Yang, Wenting Sun, Sharath Nagaraja, Joseph K. Lefkowitz, Yiguang Ju

Research output: Contribution to journalArticlepeer-review

43 Scopus citations


The present work combines numerical and experimental efforts to investigate the effect of nanosecond pulsed plasma discharges on the low-temperature oxidation of C2H4/O2/Ar mixtures under reduced pressure conditions. The nonequilibrium plasma discharge is modeled using a one-dimensional framework, employing separate electron and neutral gas temperatures, and using a detailed plasma and combustion chemical kinetic mechanism. Good agreement is seen between the numerical and experimental results, and both results show that plasma enables lowtemperature C2H4oxidation. Compared to zero-dimensional modeling, the one-dimensional modeling significantly improves predictions, probably because it produces a more complete physical description (including sheath formation and accurate reduced electric field). Furthermore, the one- and zero-dimensional models show very different reaction pathways, using the same chemical kinetic mechanism and thus suggest different interpretations of the experimental results. Two kinetic mechanisms (HP-Mech and USC Mech-II) are examined in this study. The modeling results from HP-Mech agree better with the experimental results than those of USC Mech-II because USC Mech-II does not include the OH + C2H4= CH2CH2OH reaction pathway. The model shows that 75-77% of the input pulse energy is consumed during the breakdown process in electron impact dissociation, excitation, and ionization reactions, which efficiently produce reactive radical species, fuel fragments, and excited species. The modeling results using HP-Mech reveal that reactions between O(D) and C2H4generate 24% of OH, 19% of HCO, 60% of CH3, 63% of CH2, and 17% of CH2O. These in turn significantly enhance hydrocarbon oxidation, since 83% of CO comes from HCO and 53% of CO2comes from CH2under the present low-temperature environment and short time scale.

Original languageEnglish (US)
Pages (from-to)1240-1252
Number of pages13
JournalJournal of Propulsion and Power
Issue number5
StatePublished - 2016
Externally publishedYes

Bibliographical note

Publisher Copyright:
Copyright © 2015 by the American Institute of Aeronautics and Astronautics, Inc. All rights reserved.


Dive into the research topics of 'Nanosecond pulsed plasma activated C2H4/O2/Ar mixtures in a flow reactor'. Together they form a unique fingerprint.

Cite this