Projects per year
Abstract
We demonstrated the use of electron energy-loss spectroscopy (EELS) to evaluate the composition of phenytoin:hydroxypropyl methylcellulose acetate succinate (HPMCAS) spin-coated solid dispersions (SDs). To overcome the inability of bright-field and high-angle annular dark-field TEM imaging to distinguish between glassy drug and polymer, we used the π-π∗ transition peak in the EELS spectrum to detect phenytoin within the HPMCAS matrix of the SD. The concentration of phenytoin within SDs of 10, 25, and 50 wt % drug loading was quantified by a multiple least-squares analysis. Evaluating the concentration of 50 different regions in each SD, we determined that phenytoin and HPMCAS are intimately mixed at a length scale of 200 nm, even for drug loadings up to 50 wt %. At length scales below 100 nm, the variance of the measured phenytoin concentration increases; we speculate that this increase is due to statistical fluctuations in local concentration and chemical changes induced by electron irradiation. We also performed EELS analysis of an annealed 25 wt % phenytoin SD and showed that the technique can resolve concentration differences between regions that are less than 50 nm apart. Our findings indicate that EELS is a useful tool for quantifying, with high accuracy and sub-100 nm spatial resolution, the composition of many pharmaceutical and soft matter systems.
Original language | English (US) |
---|---|
Pages (from-to) | 7411-7419 |
Number of pages | 9 |
Journal | Langmuir |
Volume | 32 |
Issue number | 29 |
DOIs | |
State | Published - Jul 26 2016 |
MRSEC Support
- Shared
PubMed: MeSH publication types
- Journal Article
Fingerprint
Dive into the research topics of 'Nanoscale Concentration Quantification of Pharmaceutical Actives in Amorphous Polymer Matrices by Electron Energy-Loss Spectroscopy'. Together they form a unique fingerprint.Projects
- 2 Finished
-
MRSEC IRG-3: Hierarchical Multifunctional Macromolecular Materials
Reineke, T. M., Bates, F. S., Dorfman, K., Dutcher, C. S., Hillmyer, M. A., Lodge, T., Morse, D. C., Siepmann, I., Barreda, L. & Ganewatta, M. S.
11/1/14 → 10/31/20
Project: Research project
-