TY - BOOK
T1 - Nanomagnetic Materials
T2 - Fabrication, Characterization and Application
AU - Yamaguchi, Akinobu
AU - Hirohata, Atsufumi
AU - Stadler, Bethanie J.H.
N1 - Publisher Copyright:
© 2021 Elsevier Inc. All rights reserved.
PY - 2021/1/1
Y1 - 2021/1/1
N2 - Nanomagnetic Materials: Fabrication, Characterization and Application explores recent studies of conventional nanomagnetic materials in spintronics, data storage, magnetic sensors and biomedical applications. In addition, the book also reviews novel magnetic characteristics induced in two-dimensional materials, diamonds, and those induced by the artificial formation of lattice defect and heterojunction as novel nanomagnetic materials. Nanomagnetic materials are usually based on d- and f-electron systems. They are an important solution to the demand for higher density of information storage, arising from the emergence of novel technologies required for non-volatile memory systems. Advances in the understanding of magnetization dynamics and in the characteristics of nanoparticles or surface of nanomagnetic materials is resulting in greater expansion of applications of nanomagnetic materials, including in biotechnology, sensor devices, energy harvesting, and power generating systems. This book provides a cogent overview of the latest research on novel nanomagnetic materials, including spintronic nanomagnets, molecular nanomagnets, self-assembling magnetic nanomaterials, nanoparticles, multifunctional materials, and heterojunction-induced novel magnetism.
AB - Nanomagnetic Materials: Fabrication, Characterization and Application explores recent studies of conventional nanomagnetic materials in spintronics, data storage, magnetic sensors and biomedical applications. In addition, the book also reviews novel magnetic characteristics induced in two-dimensional materials, diamonds, and those induced by the artificial formation of lattice defect and heterojunction as novel nanomagnetic materials. Nanomagnetic materials are usually based on d- and f-electron systems. They are an important solution to the demand for higher density of information storage, arising from the emergence of novel technologies required for non-volatile memory systems. Advances in the understanding of magnetization dynamics and in the characteristics of nanoparticles or surface of nanomagnetic materials is resulting in greater expansion of applications of nanomagnetic materials, including in biotechnology, sensor devices, energy harvesting, and power generating systems. This book provides a cogent overview of the latest research on novel nanomagnetic materials, including spintronic nanomagnets, molecular nanomagnets, self-assembling magnetic nanomaterials, nanoparticles, multifunctional materials, and heterojunction-induced novel magnetism.
UR - http://www.scopus.com/inward/record.url?scp=85123069894&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=85123069894&partnerID=8YFLogxK
U2 - 10.1016/C2018-0-05445-6
DO - 10.1016/C2018-0-05445-6
M3 - Book
AN - SCOPUS:85123069894
SN - 9780128223543
BT - Nanomagnetic Materials
PB - Elsevier
ER -