TY - JOUR
T1 - Nanodusty plasma chemistry
T2 - A mechanistic and variational transition state theory study of the initial steps of silyl anion-silane and silylene anion-silane polymerization reactions
AU - Bao, Junwei Lucas
AU - Seal, Prasenjit
AU - Truhlar, Donald G.
N1 - Publisher Copyright:
© the Owner Societies 2015.
PY - 2015/6/28
Y1 - 2015/6/28
N2 - The growth of nanodusty particles, which is critical in plasma chemistry, physics, and engineering. The aim of the present work is to understand the detailed reaction mechanisms of early steps in this growth. The polymerization of neutral silane with the silylene or silyl anion, which eliminates molecular hydrogen with the formation of their higher homologues, governs the silicon hydride clustering in nanodusty plasma chemistry. The detailed mechanisms of these important polymerization reactions in terms of elementary reactions have not been proposed yet. In the present work, we investigated the initial steps of these polymerization reactions, i.e., the SiH4 + Si2H4-/Si2H5- reactions, and we propose a three-step mechanism, which is also applicable to the following polymerization steps. CM5 charges of all the silicon-containing species were computed in order to analyze the character of the species in the proposed reaction mechanisms. We also calculated thermal rate constant of each step using multi-structural canonical variational transition state theory (MS-CVT) with the small-curvature tunneling (SCT) approximation, based on the minimum energy path computed using M08-HX/MG3S electronic structure method.
AB - The growth of nanodusty particles, which is critical in plasma chemistry, physics, and engineering. The aim of the present work is to understand the detailed reaction mechanisms of early steps in this growth. The polymerization of neutral silane with the silylene or silyl anion, which eliminates molecular hydrogen with the formation of their higher homologues, governs the silicon hydride clustering in nanodusty plasma chemistry. The detailed mechanisms of these important polymerization reactions in terms of elementary reactions have not been proposed yet. In the present work, we investigated the initial steps of these polymerization reactions, i.e., the SiH4 + Si2H4-/Si2H5- reactions, and we propose a three-step mechanism, which is also applicable to the following polymerization steps. CM5 charges of all the silicon-containing species were computed in order to analyze the character of the species in the proposed reaction mechanisms. We also calculated thermal rate constant of each step using multi-structural canonical variational transition state theory (MS-CVT) with the small-curvature tunneling (SCT) approximation, based on the minimum energy path computed using M08-HX/MG3S electronic structure method.
UR - http://www.scopus.com/inward/record.url?scp=84935907849&partnerID=8YFLogxK
UR - http://www.scopus.com/inward/citedby.url?scp=84935907849&partnerID=8YFLogxK
U2 - 10.1039/c5cp01979f
DO - 10.1039/c5cp01979f
M3 - Article
C2 - 26020493
AN - SCOPUS:84935907849
SN - 1463-9076
VL - 17
SP - 15928
EP - 15935
JO - Physical Chemistry Chemical Physics
JF - Physical Chemistry Chemical Physics
IS - 24
ER -