TY - JOUR
T1 - N=(0,2) deformation of the CP(1) model
T2 - Two-dimensional analog of N=1 Yang-Mills theory in four dimensions
AU - Cui, Xiaoyi
AU - Shifman, M.
PY - 2012/2/6
Y1 - 2012/2/6
N2 - We consider two-dimensional N=(0,2) sigma models with the CP(1) target space. A minimal model of this type has one left-handed fermion. Nonminimal extensions contain, in addition, N f right-handed fermions. Our task is to derive expressions for the β functions valid to all orders. To this end we use a variety of methods: (i)perturbative analysis; (ii)instanton calculus; (iii)analysis of the supercurrent supermultiplet (the so-called hypercurrent) and its anomalies, and some other arguments. All these arguments, combined, indicate a direct parallel between the heterotic N=(0,2) CP(1) models and four-dimensional super-Yang-Mills theories. In particular, the minimal N=(0,2) CP(1) model is similar to N=1 supersymmetric gluodynamics. Its exact βfunction can be found; it has the structure of the Novikov-Shifman- Vainshtein-Zakharov (NSVZ) βfunction of supersymmetric gluodynamics. The passage to nonminimal N=(0,2) sigma models is equivalent to adding matter. In this case an NSVZ-type exact relation between the βfunction and the anomalous dimensions γ of the "matter" fields is established. We derive an analog of the Konishi anomaly. At large N f our β function develops an infrared fixed point at small values of the coupling constant (analogous to the Banks-Zaks fixed point). Thus, we reliably predict the existence of a conformal window. At N f=1 the model under consideration reduces to the well-known N=(2,2) CP(1) model.
AB - We consider two-dimensional N=(0,2) sigma models with the CP(1) target space. A minimal model of this type has one left-handed fermion. Nonminimal extensions contain, in addition, N f right-handed fermions. Our task is to derive expressions for the β functions valid to all orders. To this end we use a variety of methods: (i)perturbative analysis; (ii)instanton calculus; (iii)analysis of the supercurrent supermultiplet (the so-called hypercurrent) and its anomalies, and some other arguments. All these arguments, combined, indicate a direct parallel between the heterotic N=(0,2) CP(1) models and four-dimensional super-Yang-Mills theories. In particular, the minimal N=(0,2) CP(1) model is similar to N=1 supersymmetric gluodynamics. Its exact βfunction can be found; it has the structure of the Novikov-Shifman- Vainshtein-Zakharov (NSVZ) βfunction of supersymmetric gluodynamics. The passage to nonminimal N=(0,2) sigma models is equivalent to adding matter. In this case an NSVZ-type exact relation between the βfunction and the anomalous dimensions γ of the "matter" fields is established. We derive an analog of the Konishi anomaly. At large N f our β function develops an infrared fixed point at small values of the coupling constant (analogous to the Banks-Zaks fixed point). Thus, we reliably predict the existence of a conformal window. At N f=1 the model under consideration reduces to the well-known N=(2,2) CP(1) model.
UR - https://www.scopus.com/pages/publications/84857753722
UR - https://www.scopus.com/inward/citedby.url?scp=84857753722&partnerID=8YFLogxK
U2 - 10.1103/PhysRevD.85.045004
DO - 10.1103/PhysRevD.85.045004
M3 - Article
AN - SCOPUS:84857753722
SN - 1550-7998
VL - 85
JO - Physical Review D - Particles, Fields, Gravitation and Cosmology
JF - Physical Review D - Particles, Fields, Gravitation and Cosmology
IS - 4
M1 - 045004
ER -